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ABSTRACT 

 

Measurements of atmospheric carbon dioxide (CO2) have led to an understanding 

of the past and present CO2 trends at global scales.  However, many of the processes that 

underlie the CO2 fluxes are highly uncertain, especially at smaller spatial scales in the 

terrestrial biosphere.  Our abilities to forecast climate change and manage the carbon 

cycle are reliant on an understanding of these underlying processes.  In this dissertation, 

new steps were taken to understand the biogenic and anthropogenic processes based on 

analysis with an atmospheric transport model and simultaneous measurements of CO2 

and other trace gases.   

The biogenic processes were addressed by developing an approach for 

quantifying photosynthesis and respiration surface fluxes using observations of CO2 and 

carbonyl sulfide (COS).  There is currently no reliable method for separating the 

influence of these gross biosphere fluxes on atmospheric CO2 concentrations.  First, the 

plant sink for COS was quantified as a function of the CO2 photosynthesis uptake using 

the STEM transport model and measurements of COS and CO2 from the INTEX-NA 

campaign.  Next, the STEM inversion model was modified for the simultaneous 

optimization of fluxes using COS and CO2 measurements and using only CO2 

measurements.  The CO2-only inversion was found to be process blind, while the 

simultaneous COS/CO2 inversion was found to provide a unique estimate of the 

respiration and photosynthesis component fluxes.  Further validation should be pursued 

with independent observations.  The approach presented here is the first application of 

COS measurements for inferring information about the carbon cycle. 

Anthropogenic emissions were addressed by improving the estimate of the fossil 

fuel component of observed CO2 by using observed carbon monoxide (CO).  Recent 

applications of the CO approach were based on simple approximations of non-fossil fuel 

influences on the measured CO such as sources from oxidation of volatile organic carbon 
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species, sinks from oxidation of CO, and sources from forest fires.  A revised CO method 

was developed using STEM simulations of atmospheric reactions and tracers of different 

combustion sources.  Applications of the revised method to the NASA INTEX-NA 

measurements showed large differences with conventional methods.  Application to the 

INTEX-B measurements resulted in partitioning of continental and offshore oil rig 

sources around Mexico. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

 

Measurements of atmospheric carbon dioxide (CO2) have led to an understanding 

of the past and present CO2 trends at global scales.  The current annual inputs from fossil 

fuel emissions are 7.3 PgC/yr [Andres, et al., 1996; Brenkert, 1998] while the 

anthropogenic land use change contribution is 1.6 PgC/yr [Houghton, 1995].  The annual 

growth of atmospheric CO2 varies from 0.5 to 3.5 ppm/yr indicating that the oceans and 

terrestrial biosphere remove approximately half of the anthropogenic CO2 sources 

[Conway, et al., 1994].   

While the global carbon cycle trends are well known, many of the processes that 

underlie the CO2 fluxes are highly uncertain, especially at smaller spatial scales in the 

terrestrial biosphere.  Independent approaches for analyzing the terrestrial biosphere sinks 

in the northern hemisphere have not been able to converge on the same flux estimate 

[Janssens, et al., 2003b; Pacala, et al., 2001].  Estimates of the response of terrestrial 

vegetation and soil carbon pools to climate change remain poorly constrained by 

observations and models [Friedlingstein, et al., 2003; Fung, et al., 2005]. 

Uncertainty in the carbon cycle processes is an important problem because it 

limits our abilities to forecast climate change and manage the carbon cycle.  The climate 

forecasting uncertainty due to carbon cycle forecasting uncertainty remains a large 

impediment to improved accuracy in climate projections [Intergovernmental Panel on 

Climate Change, 2001; National Academy of Sciences, 2001].  In particular, the rate at 

which the oceans and terrestrial biosphere will absorb anthropogenic CO2 is not well 

constrained for a changing climate system.   
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The carbon cycle uncertainty at the regional scale is also important because it 

limits our abilities to design efficient and effective carbon management technologies and 

policies.  The well known global trends are less applicable to designing solutions that can 

be applied at regional scales by governments and businesses.  For example, conversion of 

agriculture to forest land is thought to increase carbon sequestration in the soils, but the 

limited understanding of soil processes at the regional scale results in a large uncertainty 

in estimates of soil carbon initiatives sequestration [Heath, et al., 2002]. 

An ambitious research program called the North American Carbon Program 

(NACP) is designed to resolve these uncertainties through studies of the carbon cycle at a 

regional scale [Denning, et al., 2005; Sarmiento and Wofsy, 1999; Wofsy and Harris, 

2002].  North America provides an excellent domain for carbon studies because of the 

controversy over the spatial extent of the northern hemisphere terrestrial sink [Fan, et al., 

1998; Gurney, et al., 2002; Tans, et al., 1990], the large U.S. source of anthropogenic 

emissions [Blasing, et al., 2005], and the expanding U.S. observation network [Denning, 

et al., 2005].  The implementation strategy involves the synthesis of observations and 

models to refine the current knowledge of carbon cycle mechanisms and develop 

predictive capabilities that can be used to design efficient policy.   

 

1.1.1 Top Down and Bottom Up Approaches 

At the heart of the NACP implementation strategy is a feedback between 

observations, model-data synthesis, and prognostic models.  A variety of observations are 

made from surface, aircraft, and satellite platforms.  The observations are synthesized 

with diagnostic models in order to validate and refine the understanding of the processes 

controlling the carbon cycle.  The process information is then used in prognostic models 

to forecast the carbon cycle under different climate change and carbon management 

scenarios.   
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One approach to the model-data synthesis step is to apply atmospheric 

assimilation models that take atmospheric CO2 concentrations as input and output surface 

fluxes (top down approach or inversion).  Independent estimates of surface fluxes are 

estimated with the surface flux models that are based on mechanisms such as 

photosynthesis and respiration (bottom up approach).  The differences in the 

independently derived surface fluxes are analyzed in order to refine our understanding of 

the surface flux mechanisms and improve the diagnostic models.  An improved 

understanding of the mechanisms is essential to developing the forecast model because 

carbon-climate feedback mechanisms make simple extrapolation inaccurate.   

 
Source: Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2 sources 
and sinks using atmospheric transport models, Nature, 415, 626-630. 

Figure 1.  Top down CO2 flux regions with first guess (prior) of flux mean and 
uncertainty (Gt C/yr) and dots indicating the 76 surface observation locations. 

The top down/bottom up strategy has been used at global and continental scales to 

determine mechanisms of the carbon cycle, in particular, a northern hemisphere terrestrial 
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carbon sink [Janssens, et al., 2003a; Pacala, et al., 2001].  The top down fluxes from 

atmospheric assimilation typically use observations from a global network of CO2 

observatories [GLOBALVIEW-CO2, 2005].  Top down flux regions are often aggregates 

of the forward model flux grid cells as shown in Figure 1.  The bottom up fluxes are 

obtained by analyzing inventories of carbon in forests, croplands, grasslands, reservoirs, 

rivers, wood products, anthropogenic carbon emissions, and commerce.   

These two independent fluxes are contrasted in order to develop hypotheses of 

missing mechanisms and errors in each approach.  The top down studies have 

consistently indicates a larger northern hemisphere sink than the bottom up method.  For 

example, an iterative approach between bottom up and top down methods was used to 

investigate this “missing sink” for Europe resulting in top-down sink estimates of 205 

TgC/yr and bottom-up estimates of 135 TgC/yr.  Given this strong evidence at the 

continental level for a net terrestrial sink, the goal of the North American Carbon Plan is 

to focus on determining the regional mechanisms that drive surface fluxes responsible for 

this sink.   

 

1.1.2 Top Down Approach 

Formulations of atmospheric assimilation models have been well documented  

[Enting, 2002; Rodgers, 2000] but rapid theoretical expansion has led to an abundance of 

approaches.  Most techniques are based on the simple notion that the optimal surface flux 

minimizes the square of the differences between model concentrations and observed 

concentrations, where these squared differences are weighted by the error covariances at 

the different observation points.  This cost function for retrieving optimal surface fluxes 

is, 

( ) ( ))()( 1 fMoAfMoJ T −−= −         1 

where o is the vector of concentration observations, f is the state variable vector of 

surface fluxes, M is the forward atmospheric transport model, and A is the error 
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covariance matrix that accounts for the relative precisions of the different errors in space 

and time.  By weighting the model-observation differences by the inverse of the 

uncertainties, A-1, observation points with lower error are given more consideration than 

observation points with higher error. 

The optimal solution of J (equation 1) is complicated by the fact that the forward 

atmospheric model M is computationally expensive and the state vector f is related to the 

data by implicit functions.   The computational costs of the atmospheric model M makes 

a Monte Carlo solution method time prohibitive.  An alternative approach is the gradient 

method in which optimization would involve first deriving the partial derivatives of the 

cost function with respect to the state variables.  The optimal solution of the state vector 

is solved for by setting the partial derivatives equal to zero.  The fact that the transport 

model (optimization constraints) is an implicit function of the fluxes (state variables) 

makes the partial derivatives difficult to calculate.  The partial derivatives could only be 

determined after repeated applications of the chain rule.     

Two families of methods have been developed to solve the optimization problem: 

sequential and variational.  Sequential approaches apply the Kalman filter technique to 

determine the optimal flux and variance of the optimal flux at a given time.  Variational 

approaches (e.g. 4D-Var) use Lagrange multipliers to simplify the process of solving for 

the partial derivatives of the cost function.  The variational methods can determine 

optimal fluxes and sensitivities of model outputs with respect to inputs.  While sequential 

and variational methods obtain the same flux given the same input they differ in 

computational cost, code development complexity, and ancillary outputs.   

The sequential approach has been applied extensively in CO2 assimilation 

[Enting, 2002].  The variational method has been successfully applied in CO2 

atmospheric tracer-transport [Chevallier, et al., 2005; Engelen and McNally, 2005; 

Kaminski, et al., 1999] and has recently been developed for reactive chemistry with the 

STEM atmospheric transport model [Carmichael, et al., 2003a].   
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The optimization problem (equation 1) is typically ill conditioned because the 

atmospheric observations are sparse relative to the number of flux state variables.  For 

example, a regional assimilation over North America with a 60 km flux grid resolution 

would have thousands of state variables but only a few surface observations.  Ill 

conditioning is also a problem when the observations are at points that are not well 

connected by atmospheric transport to the surface fluxes.  For example, most of the CO2 

observations in the U.S. are in the upper Midwest and northeast.  These concentrations 

are not sensitive to the surface fluxes in other regions of North America.   

To address the ill conditioned problem, past studies have added pseudo data to the 

cost function or reduced the number of state variables by aggregating the flux grid cells.  

In the future this problem may be addressed by increased availability of CO2 observations 

from high resolution satellite data [Houweling, et al., 2004].  Past studies have typically 

addressed this issue by adding terms to the cost function (pseudo data) that require that 

the optimal fluxes be similar to the prior fluxes (initial estimate of fluxes) [Gurney, et al., 

2002].  Limitations to this approach are that it adds a bias in the optimized flux estimate 

and that prior uncertainties are difficult to determine [Bousquet, et al., 1999].  An 

alternative cost term is a geostatistical penalty that forces neighboring grid cells to be 

more similar than grid cells that are more distant from each other [Michalak, et al., 2004].  

Another approach to the underdetermined problem is to reduce the number of state 

variables by aggregating the flux grid cells into several large regions.  Aggregating grid 

cells would not be appropriate for regional applications over North America due to the 

large spatial variability of terrestrial surface fluxes [Gerbig, et al., 2006].   
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1.2 Overview and Objectives 

 

The purpose of this research proposal is to increase scientific understanding of 

patterns and mechanisms of CO2 surface fluxes.  The main approach is by developing 

methods for obtaining information about biogenic and anthropogenic processes using 

observations of trace gas species that are influenced by these processes.  A novel 

approach for quantifying photosynthesis and respiration is developed using 

measurements of carbonyl sulfide (COS), CO2, and the STEM transport and inversion 

models.  The COS method development is addressed in Chapters 2 and 3.  The approach 

for quantifying fossil fuel CO2 sources with CO measurements is revised using the STEM 

reactive transport model and additional tracers of combustion processes.  The CO method 

development is addressed in Chapters 4 and 5.  The results presented in Chapter 4 have 

been accepted for publication [Campbell, et al., 2007].  Manuscripts are under 

preparation for the results from Chapters 2, 3, and 5.  Preliminary results from Chapter 3 

are in a manuscript under review [Blake, et al., Submitted].  

The STEM atmospheric transport model and the STEM inversion model are 

applied for both the COS and CO tracer developments.  The STEM forward model has 

been validated for regional applications in the INTEX-NA  (Intercontinental Chemical 

Transport Experiment –North America) TRACE-P (Transport and Chemical Evolution 

over the Pacific (TRACE-P) experiment [Carmichael, et al., 2003b; Carmichael, et al., 

2003c; Tang, et al., In Press].  The model employs the SAPRC99 chemical mechanism 

[Carter, 2000], the SCAPE II aerosol thermodynamics module, and an on-line photolysis 

solver [Tang, et al., 2003].   

The STEM inversion model has been developed using the four dimensional 

variational (4D-Var) approach for optimal estimates of model input and model 

parameters [Carmichael, et al., 2003a; Daescu and Carmichael, 2003; Sandu, et al., 
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2005].  This model has been for sensitivity studies and optimal estimation of model 

parameters such as emissions and initial conditions [Chai, et al., 2006b; Hakami, et al., 

2005; Hakami, et al., 2006; Sandu, 2006].   

Atmospheric trace gas measurements made from the NASA DC8 aircraft were 

used in both tracer applications.  The INTEX-NA experiment was over the eastern U.S. 

and Canada during the summer of 2004 while the INTEX-B experiment was over Mexico 

and the Gulf of Mexico during the spring of 2006.  These experiments provide 

unprecedented atmospheric chemistry information for simultaneous measurements of 

many atmospheric species over a wide spatial extent.  Observations included CO2 (± 0.25 

ppmv), CO (± 2 %), COS (± 10 pptv) and many other gases and aerosols.   

 

1.2.1 Background Tracer Application 1: COS Biosphere Tracer 

A promising approach for adding constraints to the optimization problem is to 

introduce information about atmospheric species that are related to CO2.  These species 

may be tracers of surface fluxes that influence CO2 such as carbon monoxide (CO) from 

anthropogenic combustion and ratios of stable isotopes for ocean and biosphere fluxes.    

Recent work has applied this approach for CO2 assimilation by extracting information 

from observation-model error covariances between CO2 and CO [Palmer, et al., In 

review].  The data from the TRACE-P campaign over the NW Pacific in March, 2001 is 

sensitive to surface fluxes in East Asia [Carmichael, et al., 2003c].  The model-

observation correlation of CO2 and CO was strong because the growing season had not 

started and anthropogenic sources that co-emit CO and CO2 were the dominant influence 

on the variation of the mixing ratios.  This study found that the CO:CO2 correlations 

applied in the assimilation led to improved optimal fluxes for CO2 and helped to 

distinguish the biogenic from anthropogenic CO2 signals.  There was less benefit to 

retrieving optimal CO fluxes, except in regions associated with large transport errors. 
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For assimilation studies focused on determining the optimal biosphere sink, the 

simultaneous assimilation approach will require a biogenic tracer rather than the CO 

anthropogenic tracer.  During the growing season, the CO:CO2 correlation will be low 

because the variability of CO2 mixing ratios is driven by the variability of the biosphere 

flux instead of the anthropogenic flux.  An appropriate approach for the growing season 

would be to exploit the information contained in mixing ratio observations of a biogenic 

tracer.    A novel tracer of the biosphere is carbonyl sulfide (COS or OCS) which is taken 

up by plants along with CO2 because of its chemical and structural similarity.  Recently, 

high correlations between CO2 and COS were observed over North America during the 

growing season [Blake, et al., Submitted; Montzka, et al., In Press], indicating that 

simultaneous assimilation of COS and CO2 could be advantageous. 

The COS observations can also be used to partition the influences of respiration 

and photosynthesis.  The current inversion studies are under-constrained for optimizing 

the net surface flux.  Thus, they are even more under-constrained for optimizing the 

separate photosynthesis and respiration surface fluxes (twice as many control variables as 

with the net flux inversion).  The COS observation is a constraint that is specific to the 

photosynthesis surface flux and should be an ideal tracer for deconvolving the 

photosynthesis and respiration influences. 

Surface fluxes of COS include the anthropogenic combustion sources, oxidation 

sinks, oxidation of reduced sulfur species (DMS, CS2) sources, ocean source/sinks, 

photolysis sinks, and terrestrial biosphere sinks [Watts, 2000].  The average tropospheric 

concentration is 0.5 pptv and the tropospheric lifetime is 2 to 7 years.  Because of this 

long lifetime, COS oxidation contributes to SO2 and can contribute to stratospheric 

particles which effect the global radiative balance [Crutzen, 1976; Engel and Schmidt, 

1994].  Laboratory and field studies of the correlations between COS and CO2 have been 

used to develop global COS budgets [Kettle, et al., 2002a; Kettle, et al., 2002b; Watts, 
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2000].  However, observed correlations between COS and CO2 have yet to be applied to 

constraining CO2 surface fluxes.   

 

1.2.2 Background Tracer Application 2: CO Combustion Tracer 

A second emerging need for tracers in regional carbon data assimilation is to filter 

CO2 observations.  An important step in previous CO2 assimilation studies is to filter 

anthropogenic combustion influences from the observed CO2 signal.  In most studies, this 

is done by using model estimates of the anthropogenic signal rather than tracer-based 

estimates.  The model approach has the following steps: 1) drive the forward atmospheric 

model with bottom up anthropogenic CO2 fluxes, 2) interpolate the model concentration 

results to the observation location, and 3) subtract this modeled anthropogenic 

concentration from the observed value.  The filtered observation is then run through the 

data assimilation model to retrieve optimal fluxes.  

This filtering of the observed data can also be achieved with regional tracers.  

Anthropogenic combustion tracers that are emitted at the same time and location as CO2 

can be used to estimate the anthropogenic component to the observed CO2.  For example, 

the concentration of CO can be multiplied by a ratio to estimate the component of 

anthropogenic CO2. 

The tracer approach to filtering has been proposed because the model inventory 

approach to filtering suffers from temporal and spatial resolution limitations.  Model 

estimates of the fossil fuel component of CO2 are obtained by simulating the transport of 

fossil fuel emission inventories with the transport model and interpolating to the 

observation location and time.  The widely used fossil fuel emission inventories have an 

annual, 1° resolution [Andres, et al., 1996; Brenkert, 1998].  Errors due to the coarse 

resolution can be expected for applications with a model domain resolution of 102 to 106 

km2 and sub-annual temporal resolution.  Finer estimates of the fossil fuel contribution 

must be developed.  
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The North American Carbon Plan proposes use of observed anthropogenic tracers 

where observations of CO2 and anthropogenic tracers such as CO are made 

simultaneously [GLOBALVIEW-CO2, 2005].  CO, which is widely measured at high time 

resolution and has been shown to yield better estimates of ffCO2 than the inventory 

method (simulating the transport of fossil fuel emission inventories) and the SF6 tracer 

method [Karstens, et al., 2005; Turnbull, et al., 2006].  The CO approach has been 

applied as, 

 ffCO2 = (obsCO – obs bgCO) / R      (2) 

Here obsCO is the observed CO concentration, obs bgCO is the concentration contribution 

from the background CO, and R is a ratio relating the adjusted CO value to ffCO2.   

All CO tracer method studies have warned that sources of CO other than fossil 

fuel could lead to significant error in results but none of these studies have been able to 

quantify these potential errors.  Recent work indicates the CO tracer technique 

overestimates fossil fuel CO2 by 0.5 to 11 ppm due to unaccounted sources of CO such as 

biomass burning and in situ photochemical production [Campbell, et al., In Preparation].  

A revised CO method is needed to address these errors while still providing a workable 

framework for filtering CO2 data. 

 

1.2.3 Summary 

In summary, tracers of CO2 sources and sinks have the potential to address the 

emerging needs of regional scale carbon assimilation as described in the North American 

Carbon Plan.  Observations of COS provide a novel biogenic tracer that has the potential 

to increase the level of determinism in the CO2 assimilation problem.  Observations of 

CO provide a tracer of anthropogenic combustion that can be used to filter CO2 

observations but such an approach needs error quantification and further development.  

The STEM regional chemical transport model and observations from field campaign 

provide ideal tools to develop these methods and evaluate tracer applications. 
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1.3 Specific Objectives 

 

 The specific objectives of this work are listed below, followed by a discussion of 

the details of each objective.   

1. Quantify COS surface fluxes over North America. 

2. Demonstrate simultaneous assimilation of CO2 and COS. 

3. Determine whether simultaneous assimilation leads to improved results over 

CO2 only assimilation.  

4. Determine errors in using CO as tracer of regional anthropogenic CO2 related 

to non-anthropogenic sources/sinks of CO.  

5. Develop revised CO tracer method. 

 

 The first objective marks the beginning of the development of COS as a novel 

tracer of biogenic CO2 (Chapter 2).  The best available bottom up fluxes of COS will be 

used in the regional scale STEM atmospheric model for comparison with aircraft 

observations.  New estimates of the dominant COS surface fluxes from plant uptake will 

be developed.  This will be the first such evaluation of these fluxes and of the regional 

atmospheric modeling framework for COS. 

 The second objective is to develop a simultaneous assimilation of CO2 and COS 

observations for determining optimal surface fluxes (Chapter 3).  Such a simultaneous 

approach to constraining the assimilation problem has only recently been attempted for 

CO2 and CO and has yet to be applied directly for the benefit of determining the northern 

hemisphere terrestrial sink.  This is because the multi-species approach is very new and 

also because no appropriate biogenic tracer for this approach has been successfully 

applied by the carbon cycle community.  The observations of CO2 and COS in the 
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INTEX-A data set have the potential to allow this biogenic tracer approach to constrain 

the biosphere fluxes over North America.  The STEM adjoint is an ideal model for 

implementing variational assimilation with this data. 

The third objective is to determine whether simultaneous assimilation leads to 

improved results over CO2 only assimilation (Chapter 3).  Both the CO2-only and CO2-

COS assimilation approaches will be implemented with the STEM adjoint and INTEX-A 

data.   

The fourth and fifth objective addresses the need to improve our understanding of 

anthropogenic influences on atmospheric CO2 (Chapter 4).  The fourth objective is to 

determine errors in the filtering approach in which CO is a tracer of regional 

anthropogenic CO2.  The full chemistry STEM model will be employed to account for the 

errors caused by non-anthropogenic sources of CO including forest fires and in situ 

photochemical production.   The quantification of this error will be an important 

contribution to the carbon cycle community that plans on expanded use of the CO method 

for the emerging field of regional carbon modeling.  The fifth objective is to apply the 

revised CO method that accounts for non-anthropogenic sources of CO to the 

measurements made during the NASA INTEX-A (Chapter 4) and INTEX-B field 

experiments (Chapter 5).   

Although these dissertation chapters are focused on the top-down method, they 

are developments that would improve the interface for the top-down and bottom-up 

approaches.  I have participated in bottom-up research to help in my understanding of the 

application.  This research includes Wisconsin biomass and soil carbon calculation 

[Campbell, et al., 2004], modeling approaches to soil carbon change [Campbell, et al., In 

review], and the Red River Gorge field study.  The soil modeling manuscript is included 

as Appendix A [Campbell, et al., In review]. 
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1.4 Summary of Contributions 

The main contributions of this research are: 

1. A top-down quantification of the COS plant uptake flux over North 

America. 

2. A new approach for partitioning photosynthesis and respiration fluxes 

using an inversion model and measurements of CO2 and COS. 

3. The first application of COS measurements to infer information about the 

carbon cycle. 

4. Estimate of the uncertainty in the CO method for estimating anthropogenic 

CO2. 

5. A revised CO method that accounts for mixed influences of fossil fuel 

combustion, forest fires, and reactive chemical processes. 

6. Application of the revised CO method to emissions over the U.S. and 

Mexico. 
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CHAPTER 2 BIOSPHERE CARBON DIOXIDE TRACER MODEL 

WITH CARBONYL SULFIDE 

2.1 Introduction 

 

The dominant processes that govern the terrestrial biosphere flux at the Earth’s 

surface are a gross sink from plant photosynthesis and a gross source from autotrophic 

(plants and algae) and heterotrophic (soil microorganisms) respiration.  The 

photosynthesis sink, respiration source, and net flux can be referred to as gross primary 

productivity (GPP), total respiration (RES), and net ecosystem exchange (NEE) 

respectively.  Because GPP and RES are the dominant terms for NEE, the fluxes can be 

related as, 

NEE = GPP - RES         (1) 

where NEE is negative for net sinks of atmospheric CO2, GPP is positive, and RES is 

negative.  The net flux from plants can be referred to as net primary productivity (NPP), 

NPP = GPP - RES_A         (2) 

where RES_A is the autotrophic respiration.   

Evidence from atmospheric CO2 observations [Ciais, et al., 1995; Denning and 

Fung, 1995; Fan, et al., 1998] and land resources data [Pacala, et al., 2001] indicates that 

the northern hemisphere NEE is an important sink for global atmospheric CO2.  However 

the dynamics of the processes that control this net sink and its spatial distribution remain 

controversial [Gurney, et al., 2002].  Factors including climate [Goulden, et al., 1998; 

Lindroth, et al., 1998] and ecological disturbances [Ciais, et al., 2005] can control the 

fine balance between GPP and RES that results in a sink or source for the NEE flux.  The 

relationship between these factors and NEE is under debate [Davidson and Janssens, 

2006].  An improved understanding of these gross fluxes is needed in order to forecast 

carbon fluxes that may result from and contribute to global change.         
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The relative contributions to NEE from RES and GPP are difficult to determine 

using current measurement techniques.  The only relatively direct measurements of GPP 

and RES fluxes are at small scales using enclosures around leaves and soil chambers 

[Sandoval-Soto, et al., 2005; Vose and Ryan, 2002].  These observations provide the basis 

for RES and GPP algorithms that are used in land surface flux models.  The up-scaling of 

these measurements for regional and global applications remains highly uncertain.  A 

measurement technique for determining RES and GPP fluxes at canopy, regional, and 

global scales is needed.    

Measurements of atmospheric CO2 and stable isotopes have been used to estimate 

the component fluxes with significant limitations.  This approach uses data assimilation 

models to infer the NEE flux based on the difference between transport model CO2 

mixing ratios and observed mixing ratios [Daley, 1991; Enting, 2002].  Measurements of 

the stable carbon isotopes (12C, 13C) in atmospheric CO2 samples are applied to partition 

the NEE fluxes into the GPP and RES components [Bowling, et al., 2001].  This 

approach is based on the differences in the ratio of isotope mixing ratios in air that is 

taken up by photosynthesis and air that is emitted during respiration.  A similar approach 

has been applied with oxygen isotopes (18O, 16O) in atmospheric CO2 [Farquhar, et al., 

1993; Francey and Tans, 1987].  The limitation of the stable isotope approach is that one 

of the gross fluxes must dominate.  However, the air masses sampled from surface 

stations and aircraft platforms are often influenced by a mixture of both GPP and RES.   

Similarly, eddy flux techniques provide direct measurements of NEE and 

additional assumptions are used to deconvolve the component fluxes.  With the eddy flux 

technique, NEE fluxes are calculated from simultaneous observations of CO2 mixing 

ratios and wind speeds [Baldocchi, et al., 1988].  The RES component can be estimated 

from the sum of the observed night-time fluxes, observed whole-day fluxes for periods 

when the plants have no leaves (deciduous forests), and estimates of day-time respiration 

[Valentini, et al., 2000].  Daytime respiration is modeled as a function of observed night-
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time fluxes, soil temperature, and air temperature.  The GPP component is estimated as 

the difference between the NEE and RES fluxes.  The daytime respiration function is 

based on the direct observations of RES and GPP from plant-scale experiments (branch 

enclosures and soil chambers).  However, these small-scale observations may be highly 

uncertain for up-scaling to field, regional, and global applications.     

Measurements from land resources inventories provide observations of soil and 

biomass carbon stocks which provide estimates of NEE and NPP [Pacala, et al., 2001].  

Direct measurements of GPP and RES fluxes are not available using this approach either.   

 It was recently proposed that simultaneous observations of atmospheric CO2 and 

carbonyl sulfide (COS) could contain information relevant to partitioning the GPP and 

RES fluxes of CO2 [Montzka, et al., In Press].  Montzka et al. [In Press] presented a new 

data set from the NOAA Global Monitoring Division (GMD) of simultaneous 

observations of COS and CO2 from a global air monitoring network.  The analysis of this 

data in comparison with plant-scale [Sandoval-Soto, et al., 2005], field-scale observations 

[Falge, et al., 2002; Xu, et al., 2002], and global observations [Farquhar, et al., 1993; 

Francey and Tans, 1987] suggests that the surface flux of COS is closely connected to 

the GPP CO2 flux but not to the RES CO2 flux.  If COS could be used as a tracer of GPP, 

then simultaneous observations of COS and CO2 would allow for the partitioning of NEE 

fluxes into GPP and RES. 

      

2.2 Background on COS Plant Uptake 

 

Global and regional trends in COS have recently been described based on 

measurements from a global network of air monitoring sites and model results [Montzka, 

et al., In Press; Sandoval-Soto, et al., 2005; Watts, 2000].  The global mean mixing ratio 

is 484 ppt with no consistent annual increase or decrease.  The major sources are from the 
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oceans, anthropogenic emissions, biomass burning, wetlands, and the oxidation of 

anthropogenic and ocean sources of DMS and CS2.  The primary sinks are plant uptake, 

soils uptake, OH oxidation, photolysis (stratosphere), and oxygen atom oxidation.  The 

lifetime calculated as the global COS mass divided by the total global sinks is 1.5 to 3 

years [Montzka, et al., In Press].  Strong correlations between plant uptake of COS and 

CO2 species have led many COS studies to calculate COS plant uptake as a function of 

published CO2 plant uptake data [Kesselmeier and Merk, 1993; Kjellström, 1998; Watts, 

2000].   

Montzka et al. [In Press] reported the seasonal fluctuations of atmospheric COS 

mixing ([Spring – Fall]/mean) ratios to be highly correlated with the CO2 fluctuations (r2 

= 0.9) with a regression slope of 6 ± 1.  This correlation of COS with CO2 is much 

stronger than with other measured species.  The slope of 6 indicates a stronger seasonal 

fluctuation of COS than CO2.   

The preferential uptake of COS over CO2 was also presented by Montzka et al. 

[In Press] as an altitudinal gradient.  Both COS and CO2 mixing ratios are reduced near 

the surface due to the plant sink, but the normalized gradient is more pronounced for 

COS.  The ecosystem relative drawdown is calculated as, 
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where UCOS/CO2 is the ecosystem relative drawdown, and 6-8kmCCOS, 
<2kmCCOS, 6-8kmCCO2, 

and <2kmCCO2 are the COS and CO2 mixing ratios observed between 6 km and 8 km 

altitude and under 2 km altitude respectively (altitudes are above sea level).  The average 

relative uptake value varied from 4 to 8 for observations at North American surface sites 

during the summer of 2007 [Montzka, et al., In Press].  Although the normalized gradient 
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is larger for COS than CO2, the total mass flux of CO2 is larger than COS because the 

mean mixing ratio of CO2 (370 ppm) is 106 greater than COS (450 ppt). 

The high correlation of COS and CO2 uptake was also observed in enclosures 

over plant branches [Sandoval-Soto, et al., 2005].  The primary relative uptake was 

calculated as, 
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where inCCOS and inCCO2 were the enclosure influent mixing ratios for COS and CO2 while 
outCCOS and outCCO2 are the effluent mixing ratios of COS and CO2.  The primary relative 

uptake of COS from these experiments is 1.5 to 3.8.  The primary relative uptake for the 

plant enclosure observations (equation 4) is smaller than the ecosystem relative uptake 

(equation 3) from the ambient observations.  This is due to the fact that large sources of 

CO2 respiration influence the ambient CO2 measurement but do not influence the plant 

enclosure CO2 measurement.  Sandoval-Soto et al. [2005] indicated that the influences on 

COS outside of the enclosure were insignificant so that the ambient drawdown of COS 

was similar to the drawdown observed within the branch enclosure.  However, the 

ambient drawdown of CO2 was different than the branch enclosure drawdown due to the 

influences of autotrophic respiration beyond the branch and heterotrophic respiration.  

These CO2 sources result in less drawdown of CO2 in the ambient air than in the branch 

enclosure air.  Less drawdown in the ambient CO2 sample than the branch enclosure 

sample would results in a smaller denominator for relative drawdown (equation 3) than 

for relative uptake (equation 4), explaining the difference in results between Sandoval-

Soto et al. [2005] and Montzka et al. [In Press].   

 The preferential uptake of COS over CO2 for the branch-scale experiments is 

consistent with biochemical studies of COS and CO2 in plant stomata.  Both ambient gas 

species are expected to diffuse into plant stomata and dissolve into stomata water at 

similar rates because they have similar free-air diffusivities and aqueous solubilities.  
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During the initial stage of photosynthesis, most of the dissolved CO2 will undergo 

hydrolysis by the enzyme carbonic anhydrase [Gillon and Yakir, 2001].  The COS is also 

rapidly consumed during hydrolysis by carbonic anhydrase [Protoschill-Krebs and 

Kesselmeier, 1992; Protoschill-Krebs, et al., 1996].  The COS hydrolysis is non-

reversible, and the COS becomes incorporated into amino acids and proteins [Brown, et 

al., 1986; Elliot, et al., 1989; Kluczewski, et al., 1985].  The CO2 hydrolysis is reversible 

so that approximately 2/3 is assimilated into carbohydrates and the remaining third is 

released back to the atmosphere [Farquhar, et al., 1993; Francey and Tans, 1987].  This 

is roughly consistent with the preferential uptake of COS vs. CO2 observed in the branch 

enclosure experiments.     

 This evidence for a GPP based surface sink of COS has led to a revised 

parameterization of the global COS plant uptake [Sandoval-Soto, et al., 2005].  The GPP-

based parameterization is,  

[ ]
[ ] 2/

2
CO2

GPP
COS

Plant *
CO
COS*F  F COCOSV=   (5)  

where COS
Plant F  is the surface sink for plant uptake of COS, CO2

GPP F  is the surface sink of 

CO2 due to photosynthesis, [COS]/[CO2] is the ambient mixing ratio of these two gases, 

and VCOS/CO2 (equation 4) is the plant primary relative uptake.  The ratios discussed so far 

are summarized in Table 1. 

Table 1. Summary of terms and significance for comparing COS and CO2 influences 
during the growing season over North America. 

Name Formula Typical Value Physical Significance Source 
Ecosystem relative 
uptake ratio 
(UCOS/CO2) Equation 3 2 to 8 

Net ecosystem flux of 
COS to CO2 

[Montzka, 
et al., In 
Press] 

Primary relative 
uptake ratio 
(VCOS/CO2) Equation 4 0.5 to 4.0 

Plant uptake of COS to 
CO2 

[Sandoval-
Soto, et 
al., 2005] 

Ratio of ambient 
mixing ratios [COS]/[CO2]

1x10-6 to 1.3x10-6  
ppt COS/ppm CO2 - 

This work 
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Past studies of global COS distributions using atmospheric transport models and 

mixing ratio observations have applied an NPP-based parameterization for the COS plant 

uptake [Kettle, et al., 2002a; Kjellström, 1998; Watts, 2000], 

[ ]
[ ]2

CO2
NPP

COS
Plant

CO
COS*F  F =   (6)  

where CO2
NPP F  is the surface NPP flux of CO2.  The GPP-based estimates using equation 5 

are approximately 4 to 6 times the NPP-based estimates using equation 6.  This is 

because GPP is approximately double NPP and typical relative uptake estimates are 

between 2 to 3 [2*(2 to 3) = 4 to 6].  The larger global sink estimates by the GPP 

parameterization indicate that the plant uptake is the dominant global COS sink and that 

the global COS sources have been largely underestimated in past global balances of COS 

sources and sinks [Montzka, et al., In Press; Sandoval-Soto, et al., 2005].   

 The Montzka et al. [In Press] analysis provided a qualitative validation of the 

GPP-based parameterization and the Sandoval-Soto et al. [2005] provided a plant scale 

validation.  However, a quantitative validation at regional or global scales is needed to 

validate this flux scheme.  Validation studies of surface fluxes at these larger spatial 

scales are performed by comparing observations of atmospheric mixing ratios with 

modeled mixing ratios.  The modeled mixing ratios are a result of driving an atmospheric 

transport model with the best available estimate of the surface flux.  This approach is 

suitable for regional applications because the spatial and temporal variations of the 

atmospheric mixing ratios are a result of the integrated influence of surface fluxes over 

regional spatial scales [Gloor, et al., 2001; Lin, et al., 2003]. 

The quantitative validation of the COS plant uptake parameterization is 

prerequisite to developing a COS-CO2 method for partitioning the NEE flux into GPP 

and RES components.  In addition, the validation of the COS plant uptake is useful for 

improving the understanding of the global sulfur cycle and stratospheric chemistry.  COS 
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is the largest non-volcanic source for stratospheric sulfate aerosol and plays an important 

role in climate forcing and stratospheric ozone chemistry [Andreae and Crutzen, 1997; 

Crutzen, 1976].  COS is implicated in the radiative forcing of climate because it 

contributes to sulfur in the stratospheric aerosol layer.  The GPP-based estimates of the 

COS plant sink are approximately 4 to 6 times the NPP-based estimates which indicates 

that past studies of the global cycle have largely underestimated COS sources.  The 

validation of the GPP-based fluxes would motivate a new analysis of the global COS 

sources. 

In order to provide a quantitative analysis of the COS plant uptake, this chapter 

presents a top-down analysis of alternative flux parameterizations.  The alternative COS 

plant uptake surface fluxes were evaluated by driving the STEM model with the fluxes 

and comparing with observed mixing ratios.  Three STEM simulations of the COS 

concentrations were completed using the three different COS plant uptake 

parameterizations summarized in Table 2.  Two GPP-based COS fluxes (equation 5) are 

developed using CO2 fluxes from the SiB and CASA land surface models.  The NPP-

based fluxes published in Kettle et al. [2002] are also used.  

Table 2. Summary of alternative COS plant uptake fluxes used in the STEM runs for 
evaluation with INTEX-NA observations.  

COS Flux Name Parameterization [COS]/[CO2] VCOS/CO2 Temporal Reference 
SiB GPP (equation 5) 1.1x10-6 Gridded Hourly, 2004 
CASA GPP (equation 5) 1.1x10-6 Gridded 3-Hourly, 2004 
Kettle NPP (equation 6) 1.4x10-6 None Monthly, Climatological 

  

Observations of COS and CO2 are used from the NASA INTEX-NA experiment 

during July and August of 2004 over North America [Blake, et al., Submitted].  

Continental observations during the growing season are utilized because the variance of 

the CO2 and COS mixing ratios is dominated by the plant uptake.  The INTEX-NA 
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observations are the most extensive regional data of COS and CO2 during the growing 

season.  The NOAA GMD record of measurements of COS and CO2 from surface sites 

and aircraft is another excellent data source that should be used in future studies 

[Montzka, et al., In Press].  Validating the surface flux over North America is also of 

great interest because there is evidence that the northern hemisphere NEE sink may be 

largely concentrated in North America [Fan, et al., 1998].   

The objective of this chapter is to refine and validate the GPP-based COS flux 

parameterization using a regional atmospheric transport model and atmospheric 

observations.  The objective of the following chapter is to apply the validated COS flux 

scheme for partitioning the NEE CO2 flux into GPP and RES components.   

In section 2.3 the methods for developing the COS plant uptake estimates and the 

subsequent model runs are presented.  In section 2.4 the observation methods are 

described.  In section 2.5 the observations are analyzed to confirm the dominant 

biosphere influence and provide a rough approximation of the primary relative uptake 

(equation 4).  In section 2.6 the modeled fluxes and modeled mixing ratio results are 

presented and compared with observations.  In section 2.7 the top-down results are 

interpreted to suggest revisions to the COS GPP plant sink parameterization. 

 

2.3 Model COS Experimental 

 

2.3.1 Transport Model 

The STEM regional chemistry model was used to simulate mixing ratios of COS 

and other species during the July/August simulation period.  The horizontal domain has a 

60 km grid resolution covering the continental U.S. and parts of Canada, Mexico, and 

adjacent oceans (Figure 5).  The vertical domain includes 21 sigma layers that extend 

from the surface up to 100 hPa.  The STEM model outputs mixing ratios at hourly time 
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steps for every grid cell in the model domain.  The STEM model is based on inputs of 

meteorology, boundary/initial conditions, and surface fluxes as summarized in Figure 2. 

 

Mesoscale 
Transport  

(STEM) 

Mesoscale 
Meteorology 

(MM5) 

Surface Flux

 

Global 
Meteorology 
(NCEP FNL) 

Boundary/Initial 
Conditions 

Simulated COS 
and CO2 Mixing 

Ratios 

 

Figure 2. Process diagram for atmospheric transport model. 

2.3.2 Boundary/Initial Conditions 

The COS model runs were driven by fixed boundary conditions estimated from 

observations from INTEX-NA.  The vertical profiles for observed COS are shown in 

Figure 3 for all flights (black) and for flight 3 which was over the Pacific Ocean (red).  

The mean mixing ratio during flight 3 of 480±20 ppt is consistent with observations from 

marine boundary layer sites in the NOAA GMD air monitoring network.  The mean 

INTEX-NA observations to the north and east of the domain are 450±20 ppt.  The 

western boundary conditions are set to 480 ppt and the other top and lateral boundary 

conditions are set to 450 ppt.  A discussion of the sensitivity of model results to boundary 

conditions is included in the following section. 
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Figure 3.  Vertical profiles of observed COS mixing ratios for all DC8 INTEX-NA flights 
(black) and for only flight 3 over the Pacific Ocean (red). 

2.3.3 COS Surface Flux Estimates Other Than Plant Uptake 

The COS surface flux inputs for the COS model, other than plant uptake, were 

interpolated from climatological gridded fluxes for July and August with a one degree 

spatial resolution and monthly temporal resolution including the soil sink, industrial 

sources, and the ocean sink [Kettle, et al., 2002a].   The reactive chemical sources from 

oxidation of dimethyl sulfide and carbon disulfide were included as surface sources in the 

climatological gridded fluxes.   

The loss of COS by oxidation with the atmospheric hydroxyl radical was 

neglected because the boundary layer July lifetime of more than a years for this process 

[Kettle, et al., 2002a] is much larger than the transport lifetime in the boundary layer of 

the model domain of several days.  It is important to note that these fluxes were estimated 
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in a global balance based on the NPP-based approach for estimating plant uptake of COS.  

The GPP-based approach yields plant uptake flux estimates that are 4 to 6 times the NPP-

based fluxes.  If the GPP-based approach had been used in the global balance then the 

COS source flux estimates would have been larger.  The uncertainty on many of the COS 

surface flux sources is very high [Watts, 2000].  

 

2.3.4 COS Plant Uptake Flux Estimates 

Three alternative estimates of COS plant uptake are used to drive the three STEM 

model runs as summarized in Table 2.  The SiB and CASA fluxes follow the GPP-based 

approach and are the product of the CO2 flux, the ratio of ambient mixing ratios, and the 

primary relative plant uptake.  The Kettle fluxes are interpolated from the global, gridded 

NPP-based COS fluxes presented in Kettle et al. [2004]. 

The primary relative uptake term is calculated for each surface grid cell in the 

STEM model domain using a land cover map [WWF, 1999] and a table of relative uptake 

terms for different land cover [Sandoval-Soto, et al., 2005].  The biome types for the land 

cover map were matched to the land cover types reported in the Sandoval-Soto et al. 

[2005] as shown in Table 3.  The land cover map does not include a category for 

agriculture which may be acceptable because the agriculture relative uptake in Sandoval-

Soto et al. [2005] is close in value to relative uptakes for the adjacent biome types of 

savannas and mixed forests.  A GIS was used to calculate the area weighted average 

value of the relative uptake for each STEM surface grid cell.  The mean relative uptake 

for the entire domain is 2.2 with the spatial variability mapped in Figure 4.  The relative 

uptake values reported in Sandoval-Soto et al. [2005] vary over an order of magnitude for 

crops and a factor of 3 for forests.  The influence of this uncertainty is analyzed in the 

results section. 
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Table 3. Primary relative uptake (VCOSCO2) observed from field experiments for different 
biome types.   

Biome 

Percent 
Area of 
Domain Primary relative Uptake 

Tropical & Subtropical Moist Broadleaf Forests 2.7% 2.65 
Tropical & Subtropical Dry Broadleaf Forests 3.8% 2.65 
Tropical & Subtropical Coniferous Forests 3.8% 2.65 
Temperate Broadleaf & Mixed Forests 11.8% 2.35 
Temperate Conifer Forests 8.3% 2.2 
Boreal Forests/Taiga 14.5% 1.35 
Tropical & Subtropical Grasslands, Savannas & Shrublands 4.2% 2.2 
Temperate Grasslands, Savannas & Shrublands 14.7% 2.5 
Flooded Grasslands & Savannas 5.1% 2 
Tundra 0.7% 2.5 
Mediterranean Forests, Woodlands & Scrub 6.0% 2.2 
Deserts & Xeric Shrublands 12.6% 2.2 
Mangroves 0.5% 2 
Snow, ice, glaciers, and rock 2.8% 2 

 

 

Figure 4.  Relative uptake of COS to CO2 as an area weighted average for each grid cell. 
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The ratio of mixing ratios ([COS]/[CO2]) is the next term (equation 5) used in 

calculating the GPP-based COS plant fluxes.  The mean for the INTEX-NA observations 

is 1.1x10-6 ± 8.9x10-8 ppm COS/ppm CO2.  The ratio of mixing ratios used in the COS 

plant uptake calculations is fixed at 1.1x10-6 ppm COS/ppm CO2 given the small 

variation of this term relative to the variation in the relative uptake term.   

The final term in the COS plant flux calculation is the GPP CO2 flux.  The CO2 

fluxes were obtained from the Simple Biosphere Model Version 3 (SiB) [Denning, et al., 

1996; Sellers, et al., 1996a; Sellers, et al., 1996b] and the Carnegie-Ames-Stanford 

approach (CASA) Biosphere model [Potter, et al., 1993; Randerson, et al., 1996].  The 

SiB and CASA land surface models are driven by landcover data, meteorological data 

from climate models and plant density data from satellite observations according to the 

Normalized Difference Vegetation Index (NDVI).  The SiB runs were completed by Ian 

Baker at the University of Colorado at a 1 degree by degree spatial resolution and hourly 

temporal resolution.  The landcover data for the SiB runs is 1 degree by 1 degree time 

invariant landcover derived from 1-km AVHRR data.  The NDVI data for the SiB runs is 

from GiMMSg with a spatial resolution of 1 degree and temporal resolution of 15-days. 

The meteorology input is from the NCEP-2 reanalysis at a 1 degree by 1 degree spatial 

resolution and 6-hourly temporal resolution.   

The CASA model runs were completed by Jim Collatz and Randy Kawa at NASA 

Goodard Space Flight Center (GSFC) with a 3 hourly temporal resolution and 1 by 1.25 

degree spatial resolution.  The meteorology input is Goddard Modeling and Assimilation 

Office GEOS4 reanalysis at the same resolution.  The CASA runs use the same landcover 

and NDVI data that are used in the SiB runs.  However, the NDVI for the SiB runs was 

interpolated to daily values while the CASA uses the same monthly value throughout the 

month.  The primary differences between the SiB and CASA results should be attributed 

to the different meteorological drivers and different water stress parameterizations.  
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In addition to the GPP-based estimates of COS plant uptake, an NPP-based 

estimate was used by interpolating from the published gridded COS plant uptake fluxes 

in Kettle et al. [2005].  The Kettle fluxes are climatological, and have a 1 degree by 1 

degree, monthly resolution [Kettle et al., 2002].  These are the only published values for 

gridded COS fluxes.  The Kettle NPP fluxes were calculated using equation 6 with input 

from climatological NPP data [Fung, et al., 1987] and a fixed [COS]/[CO2] ratio of 

1.4x10-6.  The INTEX-NA average ratio of [COS]/[CO2] is 1.1x10-6 which is smaller than 

the Kettle ratio because the Kettle ratio is a global average while the INTEX-NA average 

is based on samples close to the plant uptake which have a preferential drawdown for 

COS over CO2.     

 

2.3.5 STEM Inputs for CO2 Simulations 

Simulations of CO2 mixing ratios are also completed using the STEM transport 

model to access the accuracy of the CO2 fluxes that are used in the COS plant uptake 

parameterization.  The flux estimates are RES and GPP fluxes from CASA and SiB.  The 

ocean fluxes were 1 degree by 1 degree, monthly, climatological ocean fluxes for 2000 

[Takahashi, et al., 1999].  The fossil fuel emissions were scaled to 2004 based on 1 

degree by 1 degree, time invariant, fossil fuel emissions for 1995 [Brenkert, 1998].  The 

annual 2004 fossil fuel emissions were scaled to summer emissions based on the U.S. 

annual cycle with an amplitude of 30% [Blasing, et al., 2003].  The interannual factor 

(1.15) and seasonal factor (0.86) approximately offset each other.  The time varying 

boundary conditions for CO2 tracers of the biosphere, ocean, and fossil fuel fluxes are 

provided by the TM5 global chemical transport model [Peters, et al., 2004]. 

 

2.4 Observation Methodology 
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Observations of COS, CO2 and other trace gases were made from the DC8 aircraft 

during July and August of 2004 as a part of the NASA INTEX-NA field experiment 

[Blake, et al., Submitted].  The flights of the DC8 aircraft were typically during daylight 

hour and spanned the dates of July 1 to August 14, 2004.  Most flights were over the 

eastern United States and Canada as shown in Figure 5.  

 

Figure 5.  DC8 flight paths during the July/August 2004 INTEX-NA campaign (dotted 
lines) and STEM regional model domain (shaded box). 

COS observations were made by Donald Blake’s group from UC Irvine.  Whole 

air samples were collected in evacuated two-liter stainless steel canisters every 1 to 5 

minutes.   The samples were analyzed for COS and other species in the Blake-Rowland 

laboratory at the University of California, Riverside.    The measurement precision was 

5% with a detection limit less than 20 pptv.  The gas was always present above the 

detection limit. 

In situ observations of atmospheric CO2 (±0.25 ppm-molar uncertainty) were 

made by Stephanie Vay’s group from NASA Langley.  The measurements were made 
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with a modified Li-Cor model 6252 nondispersive infrared analyzer at a frequency of 

1Hz.  In-flight calibrations were performed every 15 minutes using standards traceable to 

the WMO Central Laboratory at NOAA/GMD [Vay, et al., 2003].  The COS and CO2 

observation data used in this study is the 1-mintue averaged data set that is publicly 

available from the INTEX-NA ftp server (http://www-air.larc.nasa.gov/cgi-bin/arcstat). 

Observations from eddy flux measurements are also used for comparison with the 

modeled CO2 fluxes.  Eddy flux results are analyzed from the Bondville site, a crop field 

(corn and soybeans) in central Illinois [Hollinger, et al., 2005].  The Bondville data 

includes fluxes of NEE, RES, and GPP developed from simultaneous measurements of 

CO2 concentrations and wind velocities from a 10 meter tower.  The eddy flux data was 

downloaded from the FLUXNET CDIAC ftp server (http://www-

eosdis.ornl.gov/FLUXNET/). 

 

2.5 Relation of COS to CO2 in INTEX-NA Observations 

 

The relation of the COS to CO2 observations is examined to ensure that the 

mixing ratio variation is dominated by the biosphere influence and to provide an 

approximation for the primary relative uptake term (equation 4).  The COS observations 

are plotted against the CO2 observations in Figure 6.  The strong correlation of COS with 

CO2 (r2 = 0.7, n = 2872) is much higher than between CO2 and other observed tracers that 

are strongly influenced by a surface flux (e.g. CO).     
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Figure 6. Mixing ratios of COS vs. CO2 observed during the INTEX-NA DC8 flights. 

In Figure 7, the COS to CO2 plot is shown for all flights in black and the Midwest 

flights in red (Illinois, Indiana, and Ohio).  The steeper slope for the Midwest flights may 

be due to the influence of C4 plants (e.g. corn, grass) which should have a more efficient 

CO2 metabolism than C3 plants but the same COS uptake mechanism [Montzka, et al., In 

Press].  The outliers that have low concentrations of COS but high concentrations of CO2 

are shown in blue.  These outliers intersected large fossil fuel combustion plumes 

offshore of New England which had enhancements of CO2 by up to 20 ppm but no 

observed enhancement of COS.  The outliers indicated in green intercepted an air mass 

heavily influenced by respiration.  While most sampling is done during the GPP 

influenced hours, this respiration influenced air mass was sampled at the early part of 

flight 7 (July 18th) at its furthest western reach where the influence of the previous night’s 

respiration was still strong.  The model also predicts larger RES concentrations than GPP 

concentrations at this point. 
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Figure 7. Mixing ratios of COS vs. CO2 observed during the INTEX-NA DC8 flights for 
all flights (black) and flights over Illinois, Ohio, and Indiana (red).  Outlier 
points are influenced by respiration (green) and fossil fuel emissions (blue). 

The ecosystem relative uptake (equation 3) from the INTEX-NA flights was 

calculated with a mean value of 5.8±1.8.  This uptake is similar to the average reported 

by Montzka et al. [2005] which ranged from 4 to 8 for the NOAA GMD aircraft sampling 

during the summer of 2005.  The spatial variability of these ecosystem relative uptake 

results is shown in Figure 8 with decreased values over the Midwest agriculture region.   

Reduced ecosystem relative uptake over the Midwest may be due to the influence of C4 

plants in this region which have a more efficient metabolism for CO2 assimilation than 

the predominant C3 plants but a similar process for COS uptake as the C3 plants.  This 

suggests that the primary relative uptake should also be lower over the agriculture region.  

However the primary relative uptake values for agriculture reported in Sandoval-Soto et 

al. [2005] are not significantly lower than for other land cover types.    
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Figure 8. Ecosystem relative uptake of COS to CO2 calculated from INTEX-NA 
observations using equation 3. 

The low ecosystem relative uptake values over the Midwest could also be 

influenced by factors other than C3/C4 vegetation such as fossil fuel CO2 sources, time 

variation of the biosphere fluxes, and long range transport.  For example, the time of day 

of the measurement could result in larger values in the morning due to the influence of 

RES.  For the INTEX-NA data, the correlation between time of sampling and ecosystem 

relative uptake is weak. 

The ecosystem relative uptake provides a rough constraint on the primary relative 

uptake.  As presented in Montzka et al. [2005], the ecosystem relative uptake can be 

approximated by the product of the primary relative uptake and the ratio of GPP to NEE 

CO2 fluxes.  The ratio of GPP to NEE CO2 fluxes for July is on average 5.7 for SiB and 

4.4 for CASA model fluxes.  Similarly, from eddy flux measurements over North 

America, the ratio of GPP to NEE ranges from 3.7 to 7.1 (Table 4) as calculated from 
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data presented in Falge et al. [2002].  For a mean ecosystem relative uptake of 5.8 and a 

GPP/NEE ratio of 3.7 to 7.1, the resulting primary relative uptake should vary between 

0.8 and 1.6.  This range of 0.8 to 1.6 falls on the lower end of the range of uptake values 

that were summarized in Sandoval-Soto et al. [2005]. 

Table 4.  Ratio of annual sum of GPP to NEE fluxes for the growing season calculated 
from eddy flux data. 

Bioregion GPP/NEE     
Temperate coniferous forest 4.4  
Temperate deciduous forest 7.1  
Grasslands 3.7  
Crops 5.1  

 

The frequency distribution and vertical profile is shown for the ratio of 

[COS]/[CO2] observations in Figure 9.  The frequency distributions are shown in  for all 

INTEX-NA flight path observations, observations below 2 km altitude, and observations 

above 2 km altitude.  The high density region near 1.3 ppt/ppm is more typical of the well 

mixed observations at higher altitudes and is similar to ratios applied in global analyses 

[Kettle, et al., 2002a; Montzka, et al., In Press].  The high density region near 1.1 ppt/ppm 

is influenced by the observations near the surface which are more sensitive to the 

preferential plant uptake of COS over CO2.  The vertical profile of the observed ratios 

decreases with decreasing altitude due to proximity to the relative uptake.  Extending this 

trend to the surface results in a [COS]/[CO2] ratio of close to 1.1x10-6.   
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Figure 9.  Observed ratio of COS to CO2 mixing ratios (ppt COS / ppm CO2) on INTEX-
NA DC8 flight paths is shown as a vertical profile (top) and frequency 
distribution (bottom).  The distributions are for all observations (thick black 
line), observations above 2 km altitude above surface level (thin black line), 
and observations below 2 altitude (dashed green line).  Ratios used in past 
studies are shown for a global study (dashed red line) and a ratio applied to 
the Northern Hemisphere (solid grey line). 
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2.6 Flux and Mixing Ratio Results  

 

2.6.1 CO2 Fluxes and Mixing Ratios 

The CO2 surface fluxes are used to drive STEM and compare with INTEX-NA 

CO2 observations to examine the accuracy of the fluxes before use in the COS plant 

uptake parameterizations.  However, this validation provides information about the net 

CO2 flux and does not necessarily provide support for the GPP CO2 component which is 

used in the COS flux parameterization.  The vertical profile of the GPP, RES, and total 

CO2 mixing ratios are shown in Figure 10.  The magnitude of the SiB components is 

larger than the magnitude of the CASA components, however the net CO2 flux is 

relatively similar.  The total modeled mixing ratios decrease with altitude at a slower rate 

than the observations, indicating that the GPP flux may be too small or the RES flux may 

be too big.  Although the flights are during the daytime, the GPP and RES influences are 

mixed with the average ratio of modeled RES to GPP mixing ratio components of 0.8 

along the flight paths.  The largest model overestimates occur over the mid-continent 

which is due to the large biosphere fluxes in this region. 
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Figure 10. Vertical profiles of mean CO2 mixing ratios for GPP (top left) and RES (top 
right) along the INTEX-NA DC8 flight paths.  The bottom plots show the 
vertical profile of mean and standard deviations for the observed and total 
modeled CO2 mixing ratios. 

The CO2 mixing ratio errors are largest and most consistent from flight to flight 

over Illinois where the model overestimates the near surface mixing ratios.  This region is 

dominated by agriculture which is an ecoregion that is less well resolved by SiB and 

CASA than other ecoregions.  Analyzing the fluxes in this area may be on the order of 

the largest errors in the SiB and CASA fluxes.  Although there is no published error 
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analysis of the GPP CO2 fluxes for these SiB and CASA fluxes, the error can be 

approximated from a preliminary comparison with eddy flux data.  Data for NEE, GPP, 

and RES surface fluxes from the Bondville eddy flux site in central Illinois are compared 

with SiB and CASA fluxes to approximate the GPP flux error.  This validation approach 

is limited by the fact that the Bondville measurements are made at 1 meter above the 

ground which has a very small influence region compared to the SiB 1 degree by 1 

degree surface flux resolution.   

A time series of GPP fluxes for early 7/2/2004 through 7/3/2004 is shown for 

CASA, SiB, and Bondville in Figure 11.  The CASA and SiB fluxes underestimate the 

magnitude of the Bondville GPP flux which is one reason that the mixing ratios were 

consistently overestimated in the Illinois region.  The daytime Bondville fluxes for July 

and August 2004 are on average 1.5 times the SiB fluxes and 1.6 times the CASA fluxes. 
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Figure 11.  GPP CO2 flux from SiB, CASA, and Bondville eddy flux site for 7/2/2004 
through 7/4/2004.     
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2.6.2 COS Fluxes 

The average July COS plant uptake fluxes from the CASA, SiB, and Kettle 

approaches are mapped in Figure 12.  The GPP-based CASA and SiB fluxes (equation 5) 

are approximately 4 times the NPP-based Kettle fluxes (equation 6) which is consistent 

with the approximation that GPP is double NPP and the mean primary relative uptake 

value of 2 used in the CASA and SiB COS flux calculations.  The Kettle fluxes are 

largest in the northeast while the CASA and SiB fluxes are largest over the mid-continent 

region.  This spatial difference is driven by the large mid-continent CO2 GPP fluxes from 

the CASA and SiB models as well as the larger relative uptake over the mid-continent.  

 

Figure 12. Average July COS plant uptake surface fluxes (moles COS/m2/s) for a) 
CASA, b) SiB, and c) Kettle approaches. 

2.6.3 COS Mixing Ratios 

The COS fluxes for plant uptake and other components were used to drive the 

STEM model for simulating mixing ratios over North America.  The modeled mixing 

ratios were interpolated to the INTEX-NA DC8 flight paths.  The mean modeled mixing 

ratios along the INTEX-NA flight paths over land and below 2 km altitude above ground 

level, are shown in Figure 13.  The mean CASA and SiB plant uptake mixing ratios are 
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approximately 4 times the Kettle mixing ratio as was the case with the fluxes.  The 

anthropogenic and ocean mixing ratios have relatively small mixing ratios compared to 

the plant uptake.  The CASA and SiB plant uptake mixing ratios are approximately 10 

times the soil sink component while the Kettle mixing ratios are approximately 2.5 times 

the soil component.  
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Figure 13. Comparison of mean modeled COS component mixing ratios along the 
INTEX-NA DC8 flight paths, below 2 km altitude above surface level for 
CASA plant uptake, SiB plant uptake, Kettle plant uptake, anthropogenic 
emissions, ocean sources, and soil sinks.  Error bars are standard deviations. 

Three alternatives of the total modeled COS mixing ratios were calculated by 

adding the three plant uptake component to the mixing ratios from the STEM runs driven 

by the other flux components and the boundary conditions.  The vertical profiles of the 

total COS mixing ratios for the different schemes is compared with the observed mixing 
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ratios in Figure 14.  More drawdown is needed for the Kettle NPP-based scheme as 

expected from plant and enzyme experiments that show that COS plant uptake is related 

to GPP and not NPP [Montzka, et al., In Press; Sandoval-Soto, et al., 2005].  The GPP-

based schemes using the SiB and CASA fluxes overestimate the magnitude of the sink.  

The GPP-based error is predicted by the analysis of the observations in the previous 

section which indicated that the primary relative uptake should range from 0.8 to 1.6 

while the published values used in the CASA and SiB COS plant uptake estimates had a 

mean of 2.2.  Further consideration of the source of error in the GPP-based results and a 

revised GPP-based estimate is provided in the following section.   
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Figure 14. Mean (left) and standard deviation (right) mixing ratio profile for observed 
and modeled COS along the INTEX-NA DC8 flight paths over land. 
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2.7 Error Analysis and Revised Relative Uptake Values 

 

The near-surface underestimate of mixing ratios by the GPP-based approaches 

(CASA and SiB) is most likely due to error in the primary relative uptake term in the flux 

calculations (equation 5).  Other potential sources of error are discussed below.  The 

primary relative uptake values used in the GPP-based flux calculations were developed 

from published data that have large uncertainty with values ranging over an order of 

magnitude for agriculture land cover and by a factor of 3 for forest land cover.  The 

approximation of the primary relative uptake based on observations presented in section 

2.5 suggests an average value of 1.1, approximately half of the mean relative uptake 

value used in the COS flux calculation.  This suggests that a scaling factor of 0.5 

multiplied by the relative uptake would minimize the mixing ratio error. 

The mixing ratio error is found to be minimized by applying a scaling factor of 

approximately 0.5 to the COS plant uptake surface fluxes.  The surface flux scaling 

factor, alpha, and the sum of the square mixing ratio errors is reported in Table 5.  A 

scaling factor of 0.6 is required to minimize the error for the CASA model runs and a 

factor of 0.5 is required for the SiB model runs.  

Table 5. Sum of mean square error for modeled COS mixing ratios using different 
surface flux scaling factors (Alpha). 

  Sum Mean Square Error      
Alpha CASA SiB      

0.4 - 1.219E+06      
0.5 1.173E+06 1.157E+06      
0.6 1.151E+06 1.165E+06      
0.7 1.188E+06 1.241E+06      
0.8 1.283E+06 1.387E+06      
1.0 1.648E+06 1.887E+06      
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Other sources of error are unlikely to account for the large near-surface mixing 

ratio error.  Other sources of error could be due to uncertainty in the two other terms in 

the COS flux calculation (equation 5), boundary conditions, initial conditions, modeled 

transport, missing COS sources and measurements.  The ratio of [COS]/[CO2] term in the 

flux calculation has a standard deviation of 8% which cannot account for the 0.5 scaling 

factor required to minimize the error.  The GPP CO2 flux term in the COS flux 

calculation may have errors that are on the order of 0.5.  However, the preliminary 

analysis of GPP error by comparison with eddy flux data suggests that CO2 GPP fluxes 

may be underestimated by the CASA and SiB models.  If the modeled GPP were 

increased, that would only increase the near-surface COS mixing ratio error. 

The boundary conditions and initial conditions are also unlikely to account for the 

near-surface COS mixing ratio error.  The boundary condition error is indicated by the 

COS mixing ratio error at higher altitudes in Figure 14.  At altitudes above 6 km the 

model mixing ratios overestimate the observations, indicating that the boundary 

conditions may be too large.  Decreasing the boundary conditions would tend to decrease 

the modeled mixing ratios at all altitudes, leading to increased error at the surface.  The 

initial conditions error is not significant because the model run is for two months but 

advection causes the influence of the initial conditions to diminish after several days. 

Transport errors are also unlikely to contribute to this level of error in the near 

surface results.  If transport error were large there would be similar errors for simulations 

of many other species but this is not the case [Tang, et al., In Press].   

Underestimated COS sources such as anoxic soils could also account for some of 

the error, but not to the extent required by the near surface errors.  The 0.5 correction is 

equivalent to a source of the magnitude of the NPP-based COS plant uptake.  It is 

unlikely that such a large source would have gone unnoticed during field measurements 

of COS.  However, the source terms are likely to be larger than currently estimated 

because current source terms were calculated to balance the NPP-based plant uptake 
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instead of the larger GPP-based plant uptake [Montzka, et al., In Press].  In other parts of 

the world where anoxic soils and wetlands are more prevalent, the revised source 

estimates will be more significant.  Biomass burning is a possible missing source given 

that the forest fires in Alaska and Canada during the summer of 2004 were the largest on 

record.  However, there are no observed enhancements of COS that coincide with the 

observed enhancements of the acetonitrile, a biomass burning tracer. 

 

2.8 Conclusions  

 

The top-down analysis of the GPP- and NPP-based parameterizations of COS 

plant uptake was completed using INTEX-NA observations and the STEM transport 

model.  Comparison of the modeled NPP-based COS mixing ratios with observations 

indicates that the NPP-based plant uptake underestimates the magnitude of this sink.  An 

analysis of the observations suggests that the primary relative uptake summarized in 

Sandoval-Soto et al. [2005] overestimates the relative uptake over North America by a 

factor of approximately 0.5, with potentially larger overestimates in the Midwest region.  

Comparison of the modeled GPP-based COS mixing ratios with observations also 

suggests that the Sandoval-Soto et al. [2005] relative uptake is overestimated by a factor 

of 0.5 to 0.6.  Further, plant enclosure experiments and top-down analysis would help to 

improve the accuracy of the relative uptake estimates. 
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CHAPTER 3 PARTITIONING RESPIRATION AND GROSS PRIMARY 

PRODUCTION WITH CARBONYL SULFIDE OBSERVATIONS 

 

3.1 Introduction 

 

A primary objective of carbon cycle science is to understand the processes 

controlling surface fluxes of CO2 so that prognostic carbon models can be coupled with 

climate models for predicting global change [Denning, et al., 2005; Wofsy and Harris, 

2002].  Biochemical processes controlling surface CO2 fluxes can be studied in detail 

with observations at spatial scales of a single plant or field [e.g. Sandoval-Soto et al., 

2005].  However, due to the heterogeneity of the land surface, larger scale observations 

are needed to provide information about the regional and global carbon fluxes.  

Atmospheric CO2 observations from aircraft and tall towers are an ideal large scale 

observation because the CO2 mixing ratios are influenced by the integral of regional 

surface fluxes across large temporal and spatial scales [Bakwin, et al., 1998a; Gerbig, et 

al., 2003a; 2003b; Gloor, et al., 2001].  The CO2 observations provide an integrated view 

because the air masses originating from the air near the heterogeneous landscape is mixed 

by atmospheric turbulence before it reaches the observation point. 

Observations of atmospheric CO2 from aircraft and tall towers provide an indirect 

measurement of the surface flux variability.  For example, an increase in the observed 

mixing ratio should correspond to an increase in the surface flux that is upwind of the 

observation point.  Because the transport mixing processes vary in space and time, a 

quantitative connection between the observation and the various upwind regions of 

influence can be complicated.  The quantitative inference of the surface flux distribution 

based on the variations of the CO2 mixing ratio observations can be obtained using 

inverse atmospheric transport approaches [Enting, 2002].  The inverse transport model 
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uses advection and turbulent diffusion data from meteorological models in order to 

convert the down-wind mixing ratios into up-wind surface fluxes.   

While the atmospheric inversion approach integrates information in time and 

space, it also integrates information across different processes.  The large variations in 

observed INTEX-NA CO2 mixing ratios are primarily influenced by respiration and 

photosynthesis.  During the INTEX-NA flights, the observations were made during the 

day when the photosynthesis flux is dominant.  However, the observations were sensitive 

to surface fluxes over broad spatial and time scales so that both respiration (RES) and 

photosynthesis (GPP) influences were significant.  Along the INTEX-NA flight paths, the 

mean ratio of modeled RES mixing ratios to modeled GPP mixing ratios was 0.8, 

indicating similar contributions from both processes.   

The task of partitioning the component fluxes is an important science question 

given that the goal of carbon science is to gain an understanding of the processes and not 

only the net surface flux.  One approach to this partitioning problem has been to add 

further constraints from a land surface model [Gerbig, et al., 2006].  Atmospheric 

inversions have typically been formulated to recover optimal surface fluxes.  However, in 

Gerbig et al. [2006], the atmospheric inversion model is coupled to a land surface model 

so that the optimization recovers parameters within the land surface model that are 

specific to GPP and RES.  This optimization problem is reliant on sufficient observations 

and quantitative uncertainty estimates of the surface fluxes and transport processes.  

Although much work has been done to quantify the uncertainty, the optimization problem 

is under-constrained due to the limited availability of observations [Matross, et al., 2006]. 

Another approach for the partitioning problem is to add additional observation 

constraints to the inversion approach that are tracers of either GPP or RES.  

Measurements of the stable carbon isotopes (12C, 13C) in atmospheric CO2 samples 

provide information about the relative RES and GPP contributions because these 

processes will take-up and emit air with characteristic ratios of the isotopes [Bowling, et 
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al., 2001].  A similar approach is possible with oxygen isotopes (18O, 16O) in atmospheric 

CO2 [Farquhar, et al., 1993; Francey and Tans, 1987].  The stable isotope approach 

requires that one of the gross fluxes must dominate.  However, atmospheric CO2 

observations from surface stations and aircraft platforms are often influenced by a 

mixture of both GPP and RES, limiting the applicability of these isotope methods. 

An ideal observational constraint for the partitioning problem would involve a 

measurement that is sensitive to only GPP or only RES.  In the previous chapter, the 

dominant flux for carbonyl sulfide (COS) was validated as a function of the GPP CO2 

fluxes.  An atmospheric inversion for COS could then be formulated in order to optimize 

the GPP flux.  An atmospheric inversion that simultaneously assimilates CO2 and COS 

could provide optimal estimates of GPP and RES fluxes.   

Limitations to this inversion approach are sources of error other than the GPP and 

RES CO2 fluxes.  Errors in modeled transport, boundary conditions and surface fluxes 

other than GPP and RES will also contribute to the CO2 error.  These other sources of 

error are also important to the COS model.  In addition, the errors in the relative uptake 

term discussed in the previous chapter will also be a source of error for the COS model.  

In the previous chapter a revised estimate of the relative uptake was estimated in order to 

minimize the influence of this relative uptake error.  In this chapter, the COS and CO2 

inversion will be developed for data along INTEX-NA flight segment in which the errors 

are very large and are unlikely to be due to boundary conditions or flux errors other than 

GPP and RES CO2 fluxes.   

The development of CO2-only, COS-only, and CO2-COS inversion models is 

presented in this chapter for the purpose of partitioning the CO2 flux estimate into GPP 

and RES components.  Background for the inverse modeling approach is presented in 

section 3.2.  The methodology for optimizing GPP and RES fluxes with COS and CO2 

observations is presented in section 3.3.  The results for the CO2-only, COS-only, and 

CO2-COS inversion are presented in sections 3.4, 3.5, and 3.6 respectively. 
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3.2 Background on STEM Inversion Model and Data 

Assimilation 

 

A STEM inverse model has been developed using the STEM regional transport 

model and the four dimensional variational (4D-Var) assimilation technique for 

sensitivity studies and optimal recover of surface fluxes, initial conditions, and boundary 

conditions [Carmichael, et al., 2003a; Chai, et al., 2006a; Sandu, et al., 2005].  For 

surface flux applications, the inversion model outputs a time-invariant scaling factor, ex,y, 

for each surface grid cell.  The scaling factor is a multiplicative correction factor for the 

initial estimates of the fluxes (F).  The optimal estimates of the fluxes will be ex,y*Fx,y.  

The initial and optimal estimates of the surface fluxes are also referred to as the prior and 

posterior fluxes, respectively.   

The inversion could also be formulated with a time varying scaling factor.  

However, increasing the number of control variable will make the problem further under-

constrained.  A time-invariant scaling factor will extract information from the 

observations related to longer time scales which may be more useful than information at 

hourly scales from a high time resolution emission scaling factor.  

The scaling factor values of e are chosen so that the model to observed mixing 

ratio error is minimized.  The minimization function is as follows, 

( )[ ]∑ −=
n

i
iii OFeMuJ 2*   1 

where J is the sum of the squares of the modeled to observed mixing ratio error, Mi is the 

modeled mixing ratio interpolated to the ith observation time and location, Oi is the ith 

observed mixing ratio, ui is the uncertainty for the ith mixing ratio (model and observed), 

and n is the total number of observations.  This inversion problem can be thought of as an 
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optimization problem in which the scalar J is the cost to be minimized and e is the control 

variable and the transport model as the constraints.  The uncertainty term, ui, should 

incorporate uncertainty due to measurement error, representation error (difference 

between model grid cell and point observation), transport error due to simulated 

advection and turbulent diffusion, and error due to components in the observed mixing 

ratios that are not directly related to the surface fluxes that are being optimized (e.g. 

optimize GPP surface fluxes but the observations have fossil fuel source components).  

The atmospheric inversion problem is under-constrained because there a few 

observations relative to the number of control variables or degrees of freedom.  When the 

problem is under-constrained, there are many possible values of the scaling factors that 

could achieve the same minimization of the cost function.  In order to reduce the number 

of possible solutions, additional observations or additional factors can be added to the 

cost function.  The availability of observations is not sufficient to fully constrain the 

problem.  For the flux inversion cost function it is typical to add factors that will 

minimize the difference between the scaling factors and 1.  This is equivalent to 

minimizing the difference between the prior fluxes and the optimized fluxes and is based 

on a Bayesian justification.  The cost function with this addition term is, 

( )[ ] [ ]∑∑∑ −+−=
Y

y
yxyx

X

x

n

i
iii epOFeMuJ 2

,,
2 1*   2 

where px,y is the uncertainty for the prior flux estimates.    

Another approach for reducing the number of possible solutions is by adding error 

covariance terms to the cost function so that errors are related between different species, 

times, and locations [Gerbig, et al., 2003a; 2003b; Lin and Gerbig, 2005; Michalak, et 

al., 2004; Michalak, et al., 2005; Palmer, et al., 2006].  The error covariance technique 

has also been applied in recent studies with the STEM 4D-Var model using multiple 

meteorology input to estimate the uncertainty due to transport error. 
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The typical approach for determining the values of the control variables that will 

minimize the cost function is to calculate the partial derivatives of the cost function with 

respect to the control variables and then use an iterative gradient search algorithm to 

converge on the optimal estimate.  For the atmospheric inversion cost function in 

equations 1 and 2, the partial derivatives are difficult to calculate because the modeled 

mixing ratios in the cost function (M) are complicated implicit functions of the control 

variable (e).  Calculating these partial derivatives would require repeated use of the chain 

rule.   

The STEM inverse model implements a practical approach for calculating the 

partial derivatives through the use of the adjoint technique.  The adjoint technique 

introduces Lagrange multiplier variables to the cost function and the constraints 

[Thacker, 1987].  The partial derivatives are calculated with the adjoint technique from 

computations that are very similar to running the STEM forward model twice.   

The STEM inverse model follows the iterative technique described above.  

During each iteration, the adjoint model calculates the partial derivatives of the cost 

function and then a minimization algorithm estimates the optimal scaling factors as a 

function of the gradients.  At the beginning of each algorithm, the adjoint model uses the 

scaling factors from the previous iteration to calculate the partial derivatives.  The Quasi-

Newton limited memory L-BFGS optimization routine is applied to search for the 

optimal scaling factors [Zhu, et al., 1997].     

 

3.3 Inversion Experimental  

 

In this study, optimal scaling factors for the GPP and RES surface fluxes are 

estimated using the STEM inversion model and observed mixing ratios of CO2 and COS 

from the INTEX-NA field campaign.   The SiB estimates of GPP and RES surface fluxes 
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discussed in Chapter 2 are the prior CO2 surface fluxes.   The prior COS surface flux is 

estimated using the GPP parameterization as the product of the SiB GPP CO2 flux, a 

fixed [COS]/[CO2] ratio of 1.1x10-6, and a fixed relative uptake of 1.5.  The uncertainty 

in the fixed relative uptake term is discussed in the following sections.   

Alternative formulations of the STEM 4D-Var model were applied to recover 

optimal surface flux scaling factors for the GPP and RES CO2 fluxes.  The six 

formulations are summarized in Table 6.  A formal analysis of the mixing ratio 

uncertainties and the flux uncertainties are not yet available for estimating the uncertainty 

terms in the cost function (equation 2).  For the inversion experiments presented here, the 

mixing ratio error (ui) is assumed to be 1% and the flux error (px,y) is assumed to be 50%.  

These values are chosen simply to weight the observations much higher than the prior 

fluxes.  The assumption of a 1% mixing ratio error is likely to underestimate the transport 

errors.  The sensitivity of the inversion results to these uncertainty parameter values will 

be examined with multiple runs using modified uncertainty assumptions.   

Table 6. Control variables and observations used in six alternative formulations of the 
STEM inverse model.  

Inversion 
Formulation Observations 

Scaling Factor 
Control Variables 

  

1 CO2 GPP   
2 CO2 RES   
3 COS GPP   
4 CO2 GPP, RES   
5 CO2, COS GPP   
6 CO2, COS GPP, RES   

 

The observation input for each of the inversion formulations depend on the 

control variable.  The observation input data is the difference between the observation 

and all components other than the control variable components.  For example, for the 
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GPP-only formulation 1 in Table 6, the input CO2 data is a residual observation 

calculated as, 
GPPO = O – (RESM + FFM + OCM + BGM)     (3) 

where GPPO is the residual observation, O is the CO2 observation, RESM is the modeled 

RES component, FFM is the modeled fossil fuel component, OCM is the ocean component, 

and BGM is the background (boundary condition) component. 

These inversion experiments assimilate observations from the section of INTEX-

NA flight 12 (July 25th) that passes over land.  The July 25th flight was chosen because 

the influence of the surface sink is very strong.  The CO2 mixing ratio errors are very 

large and are likely to be due to errors in the GPP and RES surface fluxes because 

unrealistic adjustments in the fossil fuel and ocean fluxes would be required to correct the 

errors.  This flight is also chosen because it does not have large errors due to the 

influence from large point sources of fossil fuel combustion as indicated by observations 

of CO, SO2 and other combustion tracers.  The three low altitude passes during flight 12 

are shown in Figure 15.  The flight proceeds from south to north, starting at 18 hr. GMT 

and finishing at 22 hr. GMT (12 EST to 16 EST).  The three low altitude passes will be 

referred to in order of time with the first low altitude pass over Alabama, the second low 

altitude pass over West Virginia, and the third low altitude pass over New York. 

The observed mixing ratio is the 1-minute averaged data set that merges the 

observation data for all measured species on the INTEX-NA DC8 flights (Figure 15).  

This merged data set allows for the comparison of CO2 and COS observations.  This 

averaging period also reduces the representation error.  Based on the average speed of the 

DC8, the 1-minute averaging period provides 1 to 2 observations per model grid cell.  

The observation methodologies are discussed in section 2.4 (previous chapter) of this 

work. 
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Figure 15. Altitude above surface level on flight path map (left) and time series of 
observed mixing ratios of CO2 and COS (right) for the July 25th INTEX-NA 
DC8 flight.  The successive low altitudes passes in time are marked #1, #2, 
and #3. 

 

3.4 Single Species Inversions with CO2 Observations 

 

 The model and observed mixing ratios are plotted as a time series along the flight 

12 path in Figure 16.  The contributions from GPP, RES, and fossil fuel surface fluxes 

are shown in the top plot.  All three component mixing ratios increase with decreasing 

altitude as expected.  The GPP and RES components have similar mixing ratio 

magnitudes (but opposite in sign) on the first two low altitude passes (over Alabama and 

West Virginia) with magnitudes of approximately 80 ppm on the first low altitude pass 

and 40 ppm on the second low altitude pass.  On the third low altitude pass (over New 

York) the GPP component is approximately -20 ppm while the RES component is less 

than 5 ppm.  For all three low altitude passes, the fossil fuel and NEE (GPP + RES) 

components are an order of magnitude lower than GPP.  The fossil fuel component is 3 
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ppm, 2 ppm, and 1 ppm for the first, second, and third low altitude passes respectively.  

The NEE component is approximately 1 ppm, -10 ppm, and -7 ppm for the first, second, 

and third low altitude passes respectively.  The contribution from the ocean component is 

less than 1 ppm (not shown).  There is very little variability in the contribution from the 

boundary conditions with a mean of 374±0.4 ppm (not shown).  Small changes in the 

RES and GPP fluxes will have a large influence on the modeled CO2 mixing ratio while 

small changes in the fossil fuel and ocean fluxes will have very little effect on the 

modeled CO2 mixing ratios. 

 The observed CO2 mixing ratios along the flight path shown in Figure 16 (middle 

plot) indicate large uptake near the surface at each of the low altitude passes.  The 

observed CO2 decreases from the background mixing ratio by 15 ppm, 20 ppm, and 25 

ppm during the first, second, and third low altitude passes respectively.  While the 

observed drawdown gets larger with each consecutive low altitude pass, the absolute 

magnitudes of the modeled GPP and RES components got smaller with each consecutive 

pass.  However the balance of these components (NEE) is larger for the second two low 

altitude passes.  The total modeled mixing ratios show an increase in mixing ratio relative 

to the background value during the first low altitude pass due to the slightly positive NEE 

and small fossil fuel source.  The modeled CO2 mixing ratio decreases below the 

background mixing ratios during the second and third low altitude passes due to a 

negative NEE.  For all cases, the error is positive during the low altitude passes (Figure 

16 bottom plot) indicating that the GPP sinks are too small or the RES sources are too 

large.  Unrealistic corrections to the fossil fuel and ocean components would be required 

to correct for the model to observed error.  The error is most likely due to GPP or RES 

fluxes. 
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Figure 16. Time series of modeled CO2 components mixing ratios (top), model and 
observed total mixing ratios (middle), and error (model – observed) (bottom) 
along the INTEX-NA DC8 flight 12 over the eastern U.S. 

The first inversion formulation uses only CO2 observations and only scaling 

factors for the GPP flux (no COS observations and no scaling factors for RES).  In this 

case, the inversion model estimates scaling factors that minimize the mixing ratio error 

and minimize the difference between the scaling factors and 1.  The GPP scaling factor 

output from the inversion run is shown in Figure 17.  This map also shows the prior error 

as points along the flight path (mixing ratio error before inversion scaling factors are 
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applied).  The scaling factors with the largest values are located at surface grid cells 

directly beneath and upwind of the three low altitude passes where the mixing ratio errors 

are largest.  The first low altitude pass (southern portion of flight) is influenced by 

surface fluxes to the east of the observation locations, the second low altitude pass is 

influenced by surface fluxes to the northeast and the third low altitude pass is influence 

by  fluxes to the north and northeast.    

 

Figure 17. Scaling factors (shaded grid cells) for GPP fluxes based on assimilated CO2 
mixing ratios and along the INTEX-NA DC8 flight 12.  The CO2 mixing ratio 
errors resulting from the prior fluxes (scaling factor = 1) are shown by the 
colored dots. 

The spatial extent and magnitude of the scaling factors for this inversion run 

depends heavily on the length of the simulation period (assimilation window).  For short 

simulation periods (results not shown) the extent is very small and the scaling factors are 

very large.  The opposite is true of longer assimilation windows.  For example, for a 5 
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day assimilation period the maximum scaling factor is 3.5 and the spatial extent of the 

large factors extends beyond the 3 day assimilation shown in Figure 17.  For the short 

periods, the extent is small because over a shorter time the influence of surface fluxes 

propagates a shorter distance.  For this case, only the surface flux grids closest to the 

location of the errors will have any influence on the model mixing ratios.  The scaling 

factors are large because with a smaller extent, larger fluxes are required to correct the 

same amount error.  The dependence on the simulation window length could be removed 

by adding observations at different times but in similar locations.  Another approach is to 

simultaneously optimize for initial conditions and surface flux scaling factors.  However, 

for the purpose of providing a simple demonstration of the inversion formulations in 

Table 6 the short window length will be used. 

The mixing ratios from observations, prior model (no scaling factor), and 

posterior model (optimized scaling factor) are shown in Figure 18.  The posterior 

eliminates about 90% of the error associated with the mixing ratios (equation 1) and 50% 

of the combined mixing ratio and flux error (equation 2).  The extent of the remaining 

error is largely a function of the uncertainty parameter inputs in equation 3.  For example, 

increasing the flux uncertainty to 100% results in a posterior mixing ratio that removes 

98% of the mixing ratio error (equation 1).  This also results in an unrealistic spatial 

distribution of scaling factors. 
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Figure 18. Time series of the observed, prior modeled, and posterior modeled CO2 
mixing ratios along the INTEX-NA DC8 flight 12 for assimilated CO2 mixing 
ratios and optimized GPP fluxes. 

For the next formulation of the inverse model, scaling factors are retrieved for 

RES instead of GPP.  The same simulation window of 72 hour and observations from 

flight 12 are used.  The scaling factors tend to be less than one because the RES 

component must be reduced to eliminate the positive mixing ratio error.  The spatial 

distribution of the scaling factors is shown in Figure 19.  The spatial variability of the 

RES scaling factors is similar to the distribution of GPP scaling factors from the GPP 

inversion experiment.  This similarity occurs despite the differences between the diurnal 

variation of the RES and GPP fluxes.  The GPP fluxes are large during the day and 

negligible during the night.  The opposite is true of RES fluxes.  This indicates that the 

observation points where the error occurs are influenced by fluxes over temporal ranges 

that extend beyond day time hours of the flights.  This is also due to the fact that the 

scaling factors are time invariant so the optimization model is solving for trends in the 

surface fluxes on the order of the simulation length.  
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Figure 19. Scaling factors (shaded grid cells) for RES fluxes based on assimilated CO2 
mixing ratios and along the INTEX-NA DC8 flight 12.  The CO2 mixing ratio 
errors resulting from the prior fluxes (scaling factor = 1) are shown by the 
colored dots. 

The reduction of the mixing ratio part of the cost function is approximately 90% 

for the RES inversion.  This is approximately the same reductions as with the GPP 

formulation.  The mixing ratios from observations, prior model (no scaling factor), and 

posterior model (optimized scaling factor) are shown for the RES inversion run in Figure 

20.  The posterior model to observation agreement is improved during the first two low 

altitude passes.  However, at the third low altitude pass there is little improvement.  This 

occurs because the prior RES mixing ratio component (Figure 16) at the third low altitude 

pass indicates only small RES mixing ratios.  Reducing the RES mixing ratio at third low 

altitude pass can only correct for approximately half of the error.  The cost associated 

with the flux (equation 2) is smaller with the RES inversion than with the GPP inversion.   
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Figure 20. Time series of the observed, prior modeled, and posterior modeled CO2 
mixing ratios along the INTEX-NA DC8 flight 12 for assimilated CO2 mixing 
ratios and optimized RES fluxes. 

Another possible formulation of the inversion would be to use CO2 observations 

with scaling factors for RES and another set of scaling factors for GPP.  In this approach 

there are two sets of control variables.  However, this new inversion formulation would 

be unlikely to obtain improved results over the GPP-only and the RES-only cases.  The 

GPP-only and RES-only inversions both obtained similar improvements in the cost 

function and similar scaling factors.  There solution to this inversion problem is non-

unique and using two sets of scaling factors will present a highly under constrained 

problem.  In section 3.6 the simultaneous use of COS with CO2 observations is presented 

as a means to further constrain the problem so that both RES and GPP scaling factors can 

be estimated. 
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3.5 Single Species Inversions with COS Observations 

 

The modeled and observed time series of COS mixing ratios for flight 12 are 

shown in Figure 21.  The contributions from the COS plant uptake sink (GPP), soil sink, 

ocean source, and anthropogenic source components are in the top plot.  The GPP 

component is an order of magnitude larger than the other components.  The COS GPP 

component has a similar pattern to the CO2 GPP component.  This is because the COS 

GPP flux is the CO2 GPP flux times the ambient concentration ratio (1.1x10-6) and a 

fixed relative uptake of 1.5.  The soil sink component is approximately -13, -7, and -4 ppt 

for three consecutive low altitude passes.  The anthropogenic and ocean components are 

always less than 2.5 ppt.  Small changes in the GPP fluxes will have a large influence on 

the modeled COS mixing ratio while changes in the other flux components will have a 

much smaller influence on the modeled COS mixing ratios.   

The observed COS mixing ratios along the flight path shown in Figure 21 (middle 

plot) indicate large uptake near the surface at each of the low altitude passes.  The 

observed COS decreases below the background levels for each low altitude pass.  The 

magnitude of the uptake grows with each consecutive pass from 67, 97, 124 ppt.  This 

pattern was also the case for the CO2 observations and results in a very strong correlation 

between the observed species (r2 = 0.95) shown in Figure 22.  The model COS GPP 

component follows the opposite trend by decreasing in magnitude for each consecutive 

low altitude pass. This results in an underestimate of the COS mixing ratio at the first low 

altitude pass and an overestimate at the second two low altitude passes.  The magnitude 

of the errors is shown in the bottom plot of Figure 21 indicating errors of -50 ppt, 40 ppt, 

and 80 ppt for the consecutive low altitude passes.  These errors are much larger than the 

soil sink component indicating that the GPP term is the likely source of error.   
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Figure 21. Time series of COS mixing ratios (ppt) along INTEX-NA DC8 flight 12.  The 
top plot includes modeled component concentrations for GPP, soil, ocean, and 
fossil fuel fluxes.  The middle plot compares total modeled COS with 
observed COS.  The bottom plot is the error (modeled – observed). 
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Figure 22. Observed CO2 to COS along the INTEX-NA DC8 flight 12 over land. 

The inversion model is applied with COS observations and GPP scaling factors as 

the control variable.  The map of resulting scaling factors is shown in Figure 23.  The 

GPP scaling factors are less than one upwind of the first low altitude in order to correct 

for the negative COS mixing ratio error (model < observed).  Recall that GPP scaling 

factors were greater than one for the CO2–only inversion in the previous section in order 

to correct for the positive CO2 mixing ratio error (model > observed).  This suggests that 

the net CO2 error was due to RES and not GPP.  At the next two low altitude passes the 

COS scaling factors are greater than one to correct for the positive COS mixing ratio 

error.  These two low altitude passes had GPP scaling factors of a similar magnitude for 

the CO2-only inversion.   
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Figure 23. Scaling factors (shaded grid cells) for GPP fluxes based on assimilated COS 
mixing ratios and along the INTEX-NA DC8 flight 12.  The COS mixing ratio 
errors resulting from the prior fluxes (scaling factor = 1) are shown by the 
colored dots. 

 The mixing ratio component of the cost function is reduced by 60% while the 

total cost is reduced by 45%.  The time series of observed, prior, and posterior mixing 

ratios is shown in Figure 24.  Excellent agreement between observations and posterior 

model results is obtained at the second two altitude passes but not at the first low altitude 

pass.  The scaling factors directly upwind of the first low altitude pass vary from 0.1 to 

0.2 which comes at a large cost to the prior part of the cost function.  Further 

improvements at the first low altitude pass might be achieved by relaxing the flux 

uncertainty parameter in the cost function, increasing the simulation window, or by 

adding an initial condition constraint. 
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Figure 24. Time series of the observed, prior modeled, and posterior modeled COS 
mixing ratios along the INTEX-NA DC8 flight 12 for assimilated COS 
mixing ratios and optimized GPP fluxes. 

 

3.6 Simultaneous Inversion of CO2 and COS 

 

It has been shown that the CO2 errors on flight 12 could be corrected by applying 

scaling factors to GPP or to RES.  Coupling the CO2 and COS inversion may further 

constrain the inversion problem so that the GPP and RES corrections can be teased apart.  

In Figure 25, the time series of the COS errors (red) and CO2 errors (blue) along the flight 

path are shown.   As shown in sections 3.4 and 3.5, the COS errors are dominated by GPP 

errors while the CO2 errors could be due to GPP or RES errors.  The errors for COS and 

CO2 are highly correlated for the second two low altitude passes (r2 = 0.8).  This suggests 

that the error for this segment of the flight path is due to GPP errors.  At the first low 

altitude pass, the errors for COS and CO2 are not correlated.  This indicates that the errors 
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at this segment of the flight path are due to a mixture of GPP and RES errors.  The 

simultaneous inversion of both species should allow for this error to be partitioned. 
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Figure 25. Time series of errors (model – observed) for CO2 (blue) and COS (red) along 
the INTEX-NA DC8 flight 12. 

An inversion formulation that simultaneously assimilates CO2 and COS 

observations with scaling factors for GPP is developed (no scaling factors for RES).  The 

optimized GPP scaling factors resulting from this inversion are mapped in Figure 26.  

The GPP scaling factors resulting from this simultaneous CO2-COS inversion at the first 

low altitude pass are approximately 0.7.  This value is in between the GPP scaling factors 

for the CO2-only inversion of approximately 3 and the COS-only GPP scaling factors of 

0.2.  The scaling factor of 0.7 represents a compromise between satisfying the positive 

CO2 mixing ratio error by increasing the GPP sink and satisfying the negative COS 

mixing ratio error by decreasing the GPP sink.  The GPP scaling factors resulting from 

the CO2-COS inversion at the second two low altitude passes are fairly similar to the 
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CO2-only and COS-only scaling factors because both the mixing ratio error is positive for 

CO2 and COS at these low altitude passes. 

 

Figure 26. Scaling factors (shaded grid cells) for GPP fluxes based on assimilated CO2 
and COS mixing ratios along the INTEX-NA DC8 flight 12.  The CO2 mixing 
ratio errors resulting from the prior fluxes (scaling factor = 1) are shown by 
the colored dots. 

The time series of observed, prior, and posterior mixing ratios for the CO2-COS 

inversion is shown in Figure 27.  The posterior errors increase for the first low altitude 

pass where the prior errors were opposite in sign for the two species.  At the next two low 

altitude passes the errors are greatly reduced.  However there is an over-correction for the 

CO2 case and an under-correction for the COS case.  The limitation of the CO2/COS 

inversion results shown above may be due to the fact that some of the CO2 mixing ratio 

error is due to the RES flux.  Simultaneously assimilating for both species and both 

scaling factors could allow for improved results. 
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Figure 27. Time series of the observed, prior modeled, and posterior modeled CO2 (top) 
and COS (bottom) mixing ratios along the INTEX-NA DC8 flight 12 for 
assimilated COS mixing ratios and optimized GPP fluxes. 
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3.7 Conclusions  

  

This chapter developed a novel top-down approach for partitioning GPP and RES 

components of CO2 by exploiting the relationship between COS plant uptake and CO2 

GPP fluxes.  The STEM inversion model was used to show that the inversion with only 

CO2 observations could not easily distinguish between errors in the GPP and RES 

components.  When the COS species is added to the inversion the GPP and RES surface 

fluxes are partitioned.   

Further revisions and validation of this approach are needed.  The inversion needs 

to be implemented with simultaneous optimization of RES and GPP scaling terms.  The 

COS plant uptake parameterization is the product of the CO2 GPP flux, the relative 

uptake, and the ratio of [COS]/[CO2].  In the inversion framework presented here, the 

COS mixing ratio error is attributed to error in the CO2 GPP flux term.  However, the 

relative uptake term was shown in Chapter 2 to have significant uncertainty.  Reducing 

the uncertainty in the relative uptake term will improve the accuracy of the partitioning of 

the GPP and RES CO2 fluxes.  Improved estimates of the relative uptake are likely to 

become available with further plant enclosure studies and development of mechanistic 

models of the relation between COS plant uptake and the CO2 GPP sink. 

Validation of the simultaneous inversion should also be completed using 

independent data sets.  One approach would be to use the aircraft data in a CO2-only 

inversion run and a CO2/COS inversion run.  The scaling factor from both approaches 

could be used to run the forward models for comparison with surface site data from 

NOAA GMD that is much more sensitive to the diurnal variations of GPP and RES 

fluxes.  
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CHAPTER 4 ANTHROPOGENIC CARBON DIOXIDE TRACER 

MODELS 

 

4.1 Introduction 

 

Top down studies, which infer CO2 surface fluxes from observations of 

atmospheric CO2 mixing ratio, provide strong evidence of a net sink of atmospheric CO2 

in the Northern Hemisphere terrestrial environments [Bousquet, et al., 2000; Enting, et 

al., 1995; Fan, et al., 1998; Gurney, et al., 2002; Gurney, et al., 2003; Gurney, et al., 

2004; Tans, et al., 1990].  An important step in many top down experiments is to 

apportion each CO2 observation into source/sink components as follows, 

 obsCO2 = ffCO2 + ocCO2 + bioCO2 + bgCO2 + rCO2   (1) 

here obsCO2 is the observed CO2 mixing ratio, ffCO2 is the contribution to the observed 

mixing ratio due to fossil fuel emissions, ocCO2 is the contribution from the ocean surface 

flux, bioCO2 is the contribution from the seasonally-varying, annually-balanced biosphere 

flux, bgCO2 is the background contribution, and rCO2 is the residual mixing ratio from 

less well known sources and sinks such as deforestation, forest fires, biomass energy 

emissions, and interannual climate variability.  The first three terms on the right side of 

equation 1 are considered to be relatively well known and are determined by running 

atmospheric transport models that are driven by surface flux estimates.  The rCO2 term is 

the unknown that is inverted to obtain estimates of residual surface fluxes.   

Estimates of the fossil fuel component, ffCO2, are typically obtained by driving 

atmospheric transport models with fossil fuel emission inventories.  The widely used 

fossil fuel emission inventories have an annual, 1° by 1° resolution and are based on 
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statistics of energy consumption, emission factors, and population density [Andres, et al., 

1996; Brenkert, 1998; Olivier, et al., 1996].   

This CO2 emissions inventory resolution may be appropriate for inversions of 

annual fluxes at global scales.  However, the emissions resolution could cause large 

biases for regional scale carbon inversion.  Regional scale inversions have spatial 

resolution of 102 to 106 km2 and sub-annual temporal resolution.  The seasonal variation 

of U.S. fossil fuel emissions has an amplitude of 30% [Blasing, et al., 2003] and diurnal 

variation is likely caused by lighting, heating and industrial energy consumption.  Side by 

side comparisons of monthly inversions driven by an annual scale fossil fuel inventory 

and a hypothetical seasonal varying inventory resulted in retrieved fluxes that had up to 

50% differences [Gurney, et al., 2005].  In addition to the error due to resolution, there 

are absolute errors in the inventories that must be considered in regional inversions 

[Levin, et al., 2003]. 

In order to address the need for improved ffCO2 estimates, the use of observed 

anthropogenic tracers has been proposed [Wofsy and Harris, 2002].  The development of 

such methods to apply tracers to predict ffCO2 could allow for more accurate top down 

studies.  This approach could also provide a means for validating fossil fuel emission 

inventories and carbon trading agreements. 

Studies of the effectiveness of using observations of anthropogenic tracers to 

estimate ffCO2 indicate promise as well as concerns.  Measurement of radiocarbon 

(14CO2) provide the most accurate estimates of ffCO2 but are currently sparse due to 

complexity and cost, and not yet possible at an hourly resolution [Levin, et al., 1989; 

Turnbull, et al., 2006; Zondervan and Meijer, 1996].  Sulfur hexafluoride, SF6, which is 

emitted at industrial sources and electric power stations has been shown to yield large 

errors in ffCO2 [Turnbull, et al., 2006], and thus is a poor choice for this approach.  

This paper focuses on the use of carbon monoxide (CO) as an anthropogenic 

tracer for two reasons:  (1) CO is widely measured at high time resolution and (2) the CO 
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tracer approach has been used to estimate ffCO2 in several top down studies.  The CO 

approach has been applied as, 

 ffCO2 = (obsCO – bgCO) / R      (2) 

here obsCO is the observed CO mixing ratio, bgCO is the background CO mixing ratio, 

and R is a ratio relating the CO offset to ffCO2.   

Previous work applied the CO approach to hourly tower observations at 30 

meters, in Harvard Forest [Potosnak, et al., 1999].  A linear model was fit to the data 

leading to R values of 12.5-14.2 moles CO/ 1000 moles CO2 in winter and 20-28 mol 

CO/ 1000 mol CO2 in the summer, with ffCO2 of 4-5 ppm in winter and 2-3 ppm in 

summer.  Other studies have assumed a fixed ratio, R, of 20 mol CO/ 1000 mol CO2, 

based on ratios from Potosnak et al. (1999) and ratios from total annual U.S. emissions 

[Bakwin, et al., 2004; Bakwin, et al., 1998b].  More recently, the CO approach has been 

applied by estimating R and bgCO, and reactive chemistry using atmospheric transport 

models driven by emission inventories of CO and CO2 [Gerbig, et al., 2003b; Lin, et al., 

2004].     

The major classes of potential error in the CO tracer method include: (1) errors in 

R; and (2) neglecting the non-anthropogenic sources and sinks of CO that influence the 

CO observation such as forest fires, partial oxidation of VOC’s, and the reaction of OH 

and CO.  Gerbig et al. (2003) accounted for non-anthropogenic CO for the COBRA 

campaign with a simple approach based on climatological values of OH and an 

assumption that forest fire and fossil fuel components were spatially separated.  These 

results indicate that omitting OH oxidation would yield biased results.  This analysis was 

extended by taking advantage of observed tracers and advanced photochemistry models 

to estimate the non-anthropogenic CO influences for CO observation where the forest fire 

and chemical influences are collocated.  Sensitivity of ffCO2 to the ratio R is reported by 

comparing several different methods for calculating R.  It should be noted that this work 

does not comprehensively consider the uncertainty in R as a result of potentially large 
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errors in source inventories, transport, chemistry, and the different disaggregation 

methods for CO and CO2 inventories.  The comprehensive study of the inventory ratios 

of CO:CO2 requires either a bottom up study of the errors in the inventories, or a top 

down method using the 14CO2 method [Turnbull, et al., 2006].   

The objective of our study is to estimate several of the more significant 

components of uncertainty in the CO tracer method due to forest fires and 

photochemistry contributions to the CO observations.  These uncertainty components 

may be used to help explain absolute errors in the CO method found from comparison of 

CO and 14CO2-based estimates of ffCO2.  A revised CO method was presented that may 

better account for these contributions to CO and a limited comparison of our CO method 

uncertainty estimates with absolute error estimates from a study of 14CO2 by the NOAA 

Global Monitoring Division (GMD) [Turnbull, et al., 2006].  The results of this chapter 

are published [Campbell, et al., 2007]. 

Atmospheric trace gas observations were taken from the International Consortium 

for Atmospheric Research on Transport and Transformation (ICARTT) field experiment 

conducted in the summer of 2004 over North America.  The ICARTT observations are an 

ideal data set for our application for two reasons:  (1) the data set includes tracers of 

many surface fluxes and (2) the observations cover portions of North America where 

future CO2 tower observatories are planned.  The STEM-2K3 regional air quality model 

and its adjoint [Carmichael, et al., 2003b; Sandu, et al., 2005; Tang, et al., 2004] are 

applied with the SAPRC-99 chemical mechanism (94 species, 235 chemical reactions, 30 

photolytic reactions).  Much of the observed and modeled data presented in this study are 

available online (http://www-air.larc.nasa.gov/missions/intexna/dataaccess.htm).   
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4.2 Regional Air Quality Model and Emissions 

 

The STEM-2K3 regional air quality model and its adjoint are used in this work.  

The model employs the SAPRC99 chemical mechanism [Carter, 2000], the SCAPE II 

aerosol thermodynamics module, and an on-line photolysis solver [Tang, et al., 2003].  

The photolysis reactions are particularly important to CO mixing ratios because 

photolysis is the main natural source of the OH radical. The OH radical is the primary 

oxidizing agent for CO and other reduced carbon trace gases (non-methane 

hydrocarbons) that are oxidized to CO.  The contribution to CO2 from the oxidation of 

hydrocarbons is currently not accounted for in the analysis.   

An adjoint model to STEM-2K3 has been developed for sensitivity studies and 

optimal estimation of model parameters such as emissions and initial conditions [Chai, et 

al., 2006b; Daescu and Carmichael, 2003; Hakami, et al., 2005; Sandu, et al., 2005].  

The adjoint analysis was applied to obtain quantitative estimates of the influence regions 

for observation points along the ICARTT flight paths.  A perturbation of the mixing ratio 

at the observation location, the receptor, is propagated backward in time to determine the 

sensitivities of the target with respect to the mixing ratios in each grid cell at previous 

time steps.  The resulting sensitivity value is, 

tzyxCO
COtzyx ,,,

2

receptor
2),,,(

∂
∂

=ϕ   (3) 

The time-averaged, column maximum values of the adjoint forcing term, φ, are computed 

to provide a map of the influence region as in Sandu et al. (2005).   

The input meteorology fields are from the NCAR/PSU MM5 mesoscale 

meteorological model, driven by NCEP FNL (Final Global Data Assimilation System) 

1°×1° analyzed data.  Grid nudging was performed every 6 hours, and re-initialization 

with FNL data took place every 72 hours. The cloud scheme of Grell et al. (1994) was 
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chosen for the physical parameterization, and the MRF scheme [Hong and Pan, 1996] 

was employed for PBL parameterization.  The MM5 simulation was run on a 60km 

Lambert Conformal North American domain.  The 21 sigma layers extend from the 

surface to 100 hPa.   

The time varying boundary conditions for CO2 tracers of the biosphere, ocean, 

and fossil fuel fluxes are provided by the TM5 global chemical transport model [Peters, 

et al., 2004].  The TM5 runs are on a 6° by 4° grid and are driven by ECMWF 

meteorological fields and emissions from the TransCom Continuous Experiment [Law, et 

al., 2005].  Boundary conditions for CO, O3, and other trace gases are provided by the 

MOZART-NCAR global transport model with a 2.8° horizontal resolution and MOPITT 

satellite derived forest fire emissions [Pfister, et al., 2005].  Model results for CO2 are in 

units of ppm-molar. 

 Within the model domain, surface fluxes for CO2 are from the TransCom 

Continuous Experiment including 1° hourly biogenic fluxes from the Simple Biosphere 

Model for 2003 [Baker, et al., 2003], 1° monthly ocean fluxes for 2000 [Takahashi, et 

al., 1999], and 1° annual fossil fuel emissions for 1995 [Brenkert, 1998].  The fossil fuel 

emission to 2004 were scaled using a least squares fit to U.S. annual emissions data from 

1997 to 2003 [Blasing, et al., 2004].  The annual 2004 fossil fuel emissions were scaled 

to summer emissions based on the U.S. annual cycle with an amplitude of 30% [Blasing, 

et al., 2003].  The interannual factor (1.15) and seasonal factor (0.86) approximately 

offset each other.   

Anthropogenic emissions of CO, O3, SO2, NH3, NOx, and reduced carbon species 

(VOC’s) are from the U.S. EPA National Emission Inventory (NEI) for 2001.  These 

gridded, 4 km, hourly emissions include mobile, point, area, and non-road mobile 

sources.  Reporting CO2 emissions is voluntary in the U.S., and the EPA NEI does not 

include CO2.  Biogenic emissions of VOC’s were estimated by driving the Biogenic 

Emission Inventory System 2 [Geron, et al., 1994] with the meteorological output from 
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our MM5 runs.  The effects of the different scales for these emissions are minimized by 

averaging to our 60 km model grid.  However the possibility of introducing error in the 

CO:CO2 emission ratio exists due to the interpolation of the CO2 emissions onto the 60 

km grid.   

Local LPS emissions data were obtained from the U.S. EPA Clean Air Markets 

program (http://cfpub.epa.gov/gdm/).  The emissions data included hourly, facility level 

emissions for 2004. 

 

4.3 ICARTT Observations 

 

Observations of CO2, CO, and other trace gases were taken from the NASA DC-8 

during the ICARTT field campaign in the summer of 2004.  Measurements of 

atmospheric CO2 (±0.25 ppm-molar uncertainty) and CO (±2% uncertainty) were 

obtained with a modified Li-Cor model 6252 nondispersive infrared analyzer and the 

Differential Absorption of CO Measurement (DACOM) instrument [Sachse, et al., 1987], 

respectively.  In-flight calibrations of CO2 were performed every 15 minutes with 

standards traceable to the WMO Central Laboratory at NOAA GMD [Vay, et al., 2003].  

Additional grab samples of CO were analyzed at U.C. Irvine using a gas chromatograph 

(HP 5890) equipped with a flame ionization detector and a 3 m molecular sieve column 

[Barletta, et al., 2002]. These CO measurements were calibrated using working standards 

(run every four samples) and using a gravimetrically prepared CO standard from NIST. 

A comprehensive set of complementary trace gas measurements was also 

collected during ICARTT.  Acetonitrile observations (CH3CN, ±20% uncertainty) have 

been shown to be a tracer of forest fires [Lobert, et al., 1991] and SO2 an LPS tracer.  

Acetonitrile observations were taken with a modified gas chromatographic (GC) 

instrument that had previously been used to measure PAN and oxygenated organics 
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[Singh, et al., 2003].  SO2 was measured by chemical ionization mass spectrometry (±9% 

uncertainty) [Huey, et al., 2004].  

The observations of 14CO2 (±1.6-2.6% uncertainty), CO2, and CO were made 

during the summer of 2004 in New England by NOAA GMD [Turnbull, et al., 2006].  

These measurements were taken in the boundary layer and free troposphere at locations 

in Harvard Forest, Massachusetts (42º32’N, 72º10’W) and Portsmouth, New Hampshire 

(42º57’N, 72º37’W).  Details of the extraction and accelerator mass spectrometry 

methods are in Turnbull et al. (2006). 

 

4.4 CO Tracer Methodology 

 

In this study, 4 variations of the CO tracer method were applied to estimate ffCO2 

at observation points along the ICARTT flight paths.  The first two approaches are the 

static methods [Bakwin, et al., 2004; Bakwin, et al., 1998b] that use a constant R value of 

20.  The basic static method is formulated as,  
ffCO2 = (obsCO –  obs,bgCO) / 20      (4) 

where obs,bgCO is the 20th percentile of the observed CO [Potosnak, et al., 1999].  

When this leads to negative values of the CO offset, the CO offset value was assumed to 

be zero to avoid negative contributions to ffCO2.  A revised static method was applied to 

analyze the uncertainty due to non-anthropogenic influences as follows, 
ffCO2 = (obsCO – obs,bgCO – chemCO – bbCO) / 20    (5) 

where chemCO is the net source of CO from the combined effects of OH oxidation 

sinks and VOC oxidation source, and bbCO is the biomass burning source component 

(described below). 

The other two approaches are the model methods [Gerbig, et al., 2003b; Lin, et 

al., 2004] which estimate the ratio R by transporting emission inventory fluxes with an 
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atmospheric model.  The model CO approaches can also be thought of as scaling the 

modeled fossil fuel CO2 by the ratio of the observed to modeled fossil fuel CO.  The 

basic model approach is formulated as    

 ⎟⎟
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mod,
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where ff,modCO2 and ff ,modCO are the mixing ratios resulting from driving the 

tracer model with fossil fuel inventories for CO2 and CO respectively, and mod,bgCO is the 

mixing ratio resulting from driving the tracer model with only the boundary conditions 

(no emissions, no forest fire tracer).  These model runs have no chemical reactions.   

The revised model approach accounts for the non-anthropogenic CO influence as 

follows, 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=

2
mod,

mod,
mod,

2 /
CO
COCOCOCOCOCO ff

ff
bbchembgobsff  (7) 

Note that the model approaches (equation 6 and 7) do not include any net chemistry 

effects on ff,modCO.   

The different methods in equation 4, 5, 6, and 7 are referred to as the static, 

revised static, model, and revised model methods, respectively.  These CO methods are 

compared with the inventory method in which the ffCO2 is estimated by driving the 

atmospheric transport model with emissions inventories.  

The overall chemistry mixing ratios are calculated as, 

 chemCO = modCO  – tracerCO       (8) 

where modCO is the full chemistry model result and tracerCO is the tracer model result (no 

chemistry).  The chemistry values, chemCO, are the combination of the OH sink and the 

VOC source of CO, 

 chemCO = OHCO + VOCCO      (9) 
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where VOCCO is the VOC source of CO and OHCO is the OH sink of CO.  The VOCCO 

source is estimated as the difference between the full chemistry model run and a full 

chemistry model run without VOC species in the emissions, 

 VOCCO = modCO – no vocCO       (10) 

where no vocCO is the CO prediction from a full chemistry CO model run with 

anthropogenic and biogenic VOC emissions removed from the surface flux.  VOC 

species mixing ratios have been verified with ICARTT DC-8 and WP-3 measurements.  

The biomass burning component is an important contributor to CO during the 

observation period.  Significant forest fire emissions occurred outside of the model 

domain in Canada and Alaska.  These forest fires are the largest on record for Alaska.  In 

contrast to the observed data from Gerbig et al. (2003), the ICARTT data encountered 

collocated forest fire and fossil fuel CO.  In order to use CO as a fossil fuel tracer, the 

biomass burning CO component must be estimated and subtracted from the CO 

observation. 

Outside of forest fire plumes, the model runs driven by MOZART forest fire CO 

boundary conditions were used to provide a modeled biomass burning estimate, mod,bbCO.  

For concentrated forest fire plumes (acetonitrile > 0.28 ppbv), the modeled forest fire CO 

greatly underestimates biomass burning CO.  Therefore, the modeled forest fire CO is 

used when acetonitrile is less than 0.28 ppbv and a regression-based CO estimate is used 

when acetonitrile is greater than 0.28 ppbv, 
bbCO = mod,bbCO ,    acetonitrile < 0.28 ppbv   (11) 
bbCO = α ·acetonitrile + β ,   acetonitrile≥  0.28 ppbv   (12) 

where mod,bbCO is the modeled forest fire CO, α and β are the slope and intercept terms 

from the linear regression.  The linear regression parameters are obtained by relating 

observed acetonitrile to estimated biomass burning CO, obs,bbCO, where 
obs,bbCO = obsCO – (modCO – mod,bbCO)     (13) 
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The observed acetonitrile peaks were verified to be forest fire influenced and not 

anthropogenic by inspecting values of observed CH4, NO2, and SO2. 

During one interception of a power plant plume (large point source, or LPS), the 

SO2 observations are tested as an alternative tracer to CO.  For LPS plumes, the CO 

approach may underestimate ffCO2 when the true ratio of anthropogenic CO to CO2 is less 

than the fixed (R = 20) or modeled (R = ff,modCO / ff,modCO2) ratios.  The SO2 based ffCO2 

estimates are obtained by dividing observed SO2 by the ratio of anthropogenic emissions 

of SO2 to CO2 for power plants within the influence region of the observation.  The LPS 

emissions ratios are estimated with emissions data from the U.S. EPA’s Clean Air 

Markets [EPA, 2006]. 
 

4.5 Overview of Observed and Model Results 

 

Observations and model performance were analyzed with a case study of the DC-

8 flight during the day on July 20, 2004.  This flight encountered a variety of important 

features for testing the CO method including urban pollution, LPS’s, and regional forest 

fire plumes.  In Figure 28, the exaggerated altitude of the flight (height of bars) is shown 

along with the 3 minute averaged (~30 km) CO2 mixing ratios (color of bars).  The low 

altitude segments of the flight pass over land cover that is primarily cropland in the 

Midwestern U.S. and forest in the Southeast.  The low CO2 mixing ratios near the surface 

result from the active summer biosphere in these regions.   
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Figure 28.  NASA DC-8 flight on July 20, 2004.  Heights of the bars are exaggerated 
altitude of flight path.  Color is observed CO2 (ppm) with color scheme by 
natural break (Jenks) method. 

Observation and model results from the July 20th flight are shown in the time 

series in Figure 29.  In Error! Reference source not found.a, the CO2 measurements are 

plotted along with the model results interpolated from the 60 km model domain.  The 

model captures the general trend in CO2 variation but misses the depth of the biosphere 

sink and the low altitude CO2 enhancements.  The low altitude CO2 spikes consistently 

occur at the same times as elevated mixing ratios of observed anthropogenic tracers 

including CO in Figure 29c and SO2 in Figure 29d.  These low altitude CO2 

enhancements are likely due to anthropogenic area sources and LPS’s.  Figure 29b 

provides the time series of the inventory driven fossil fuel CO2 component along the 

flight path in comparison with the modeled ocean and biosphere contributions.  The 

modeled fossil fuel CO2 (inventory approach) is 1 to 5 ppm at low altitudes and is near 

zero in the free troposphere.  From visual inspection of the observed CO2 in Figure 29a, 

the anthropogenic CO2 spikes have approximate enhancements of 4 to 10 ppm, with one 

very large plume of approximately 26 ppm at 17.1 hours.   

376 - 378

374 - 375

373

366 - 372

342 - 365

375.5 – 378.4 
373.5 – 375.5 
371.6 – 373.5 
364.8 – 371.6 
341.8 – 365.8 



www.manaraa.com

  83   

   

The simultaneous peaks of CO and acetonitrile in Figure 29c indicate very distinct 

forest fire plumes.  The spikes of acetonitrile, the forest fire tracer, correspond with 

spikes in the CO mixing ratios at mid altitudes near 17.4 hr and 21.6 hr.  There are no 

corresponding spikes of SO2 or other anthropogenic tracers that would indicate that this 

acetonitrile signal has an anthropogenic source.  For other ICARTT flights, the mid-

altitude band has an average CO level of 110 ppbv.  For these mid-altitude forest fire 

plumes, the CO levels reach 362 and 370 ppbv respectively.  The forest fire source is 

likely to be from Alaskan or Canadian forest fires as indicated by the adjoint derived 

influence region in Figure 30.   

The maximum model derived forest fire CO along the flight is 60 ppbv.  The 

model results do not reflect the influence of the concentrated forest fire plumes because 

the forest fire influence is modeled in the boundary conditions using a global transport 

model with relatively coarse resolution.  

4.6 CO Method Uncertainty 

 

The oxidation of reduced carbon species to CO is a potential source of uncertainty 

for the CO method.  During the summer, emissions of anthropogenic and biogenic 

VOC’s result in significant secondary sources of CO.  The model vocCO during the 

ICARTT period is typically low, with an average of 7 ppbv.  However, high values of 
vocCO as large as 85 ppbv occur at hot spots across the model domain, particularly over 

the southeast where biogenic emissions are high.  In Figure 31, a snapshot of the surface 

level vocCO on July 20th indicates up to 50 ppbv mixing ratios in the Midwest and the 

Southeast.  A photochemical CO source of 50 ppbv results in an enhancement in ffCO2 of 

2.5 ppm by the static CO method (equation 4).   
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Figure 29.  Time series along ICARTT DC-8 flight path on July, 20, 2004, of observed (1 
Hz) and modeled CO2 (A), modeled contributions of biosphere, ocean, and 
fossil fuel fluxes (B), model and observed CO with acetonitrile as a biomass 
burning tracer (C), and observed SO2 and the modeled chemistry contribution 
to the CO mixing ratio (D).  The model fossil fuel results shown here are 
driven by inventory emissions. 
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Figure 30.  3-day cone of influence for observation point on the July 20,2004 flight path 
that intersected a forest fire plume (latitude 34°, longitude 274°, altitude 3.6 
km).  The values shown are normalized adjoint-derived sensitivities.     

  

 

Figure 31.  Modeled CO mixing ratios from VOC oxidation (ppbv) at 21 hr (GMT), July 
20th at surface model layer. 
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The net CO production from chemical reactions, chemCO, is relatively small 

because the effect of the OH sink and VOC source tend to offset each other.  The average 
chemCO value along the ICARTT flight paths is -5.3 ppbv indicating a slight net sink.  

However, there are hot spots across the model domain with net chemical sources in the 

southeast U.S. up to 83 ppbv and net chemical sinks in the Rocky Mountains as low as  

-75 ppbv.  A net chemical CO mixing ratio of 80 ppbv results in an adjustment in ffCO2 

of 4 ppm by the static CO method.  The net chemical contribution along the July 20th 

flight path is shown in d.  The net chemical effect during this flight is primarily a sink, 

except near 18.5 hr where anthropogenic VOC emissions result in a net chemical source. 

Forest fire sources are also a significant component of CO mixing ratios over 

North America.  The effect of forest fires in Alaska and Canada during the ICARTT 

period on CO mixing ratios was estimated using model results and acetonitrile 

observations, a biomass burning tracer.  In Figure 32, the observed CO is plotted versus 

observed CO2 along with shape coding for elevated acetonitrile.  The general trend is a 

negative correlation of CO and CO2 due to the co-location of the CO source and biogenic 

CO2 sink at the surface.  The forest fire influenced observations (circles) break from this 

trend with CO enhanced by up to 240 ppbv.  A 240 ppbv increment in CO results in an 

increment of ffCO2 by the static CO method of 12 ppm.   

The model estimates of forest fires CO result in an average contribution along all 

flight paths of 9.5 ppbv.  The model estimates of bbCO along the ICARTT flight path 

greatly underestimate CO in the more concentrated plumes.  In order to obtain a better 

estimate of biomass burning CO, the observed and model results are applied in a linear 

regression (see section 2.3).  Elevated acetonitrile values greater than 0.28 ppbv were 

used to separate background acetonitrile from forest fire influenced acetonitrile.  The 

linear regression has an R2 of 0.92, indicating a strong relationship between the bbCO and 

acetonitrile in biomass burning plumes.   
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Figure 32.  Observed CO vs. observed CO2 along the July 20th ICARTT flight with 
circles indicating enhanced acetonitrile. 

Preliminary comparison of model and measured CO2 indicated that, in some 

cases, the ratio R was in error during interception of LPS plumes.  An alternative tracer 

(SO2) method was developed to provide a better ffCO2 estimate, and calculate an 

alternative R in the LPS plume.  One of the largest fossil fuel CO2 plumes encountered in 

the ICARTT period occurs on July 20th at 17.1 hr (Figure 29a).  The CO peak at this time 

is not enhanced to the extent that the CO2 peak is enhanced (Figure 29c).  However, the 

SO2 measurements near this peak reflect the high intensity of the fossil fuel plume (Figure 

29d).  The moderate enhancement of the CO collocated with the extreme enhancements 

of CO2 and SO2 are indicators of efficient LPS combustion.   

The LPS emissions within the footprint of the observation are show in Figure 33.  

The observation point at 17.1 hr (marked X) is downstream of several large 

anthropogenic sources.  The closest source in the influence region is the Wansley Electric 

Utility which burns coal and natural gas.  The hourly emissions for Wansley indicate that 

the emitted ratio of SO2 to CO2 is significantly variable in time with a value of 0.0045 

mol SO2/mol CO2 around the time of the large LPS observation.   
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Figure 33.  Emissions sources for large anthropogenic spike observed during ICARTT at 
17.1 hr GMT on July 20, 2004.  The X marks the location of the observation.  
Shaded grid cells are the adjoint derived footprint for the observation.  Green 
circles are 2004 annual emissions of SO2 from EPA Clean Sky Clean Air 
Markets inventory. 

In Figure 34, the SO2 and CO2 observations in the plume are shown.  The SO2 

observation point centered on the plume at 17.104 hr has a value of 116 ppbv.  A rough 

estimate of the fossil fuel CO2 in this plume is estimated as 26 ppm based on the 

difference between the average CO2 values for the SO2 sample period centered on 17.104 

and the average of the CO2 values just before and after the plume.  By dividing the 

observed SO2 by the ratio of SO2/CO2, the ffCO2 is estimated as 26 ppm.  Back 

calculating the CO:CO2 ratio R with the enhanced CO of 115 ppbv and estimated ffCO2 

of 26 ppm gives an effective CO:CO2 ratio R’ = 5.  Using the model CO method 

(equation 6), a much higher R value of 24.5 is estimated.  The difference between ffCO2 

estimates for enhanced CO of 115 ppbv using the static R of 20 and revised R’ of 5 is 20 

ppm.      
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Figure 34.  Large anthropogenic spike of SO2 and CO2 around 17.1 hr on the July 20, 
2004 ICARTT flight.  Horizontal bars indicate sample intake period for SO2. 

4.7 Estimates of ffCO2 

 

By comparing the differences in ffCO2 calculated by the various methods, the 

uncertainty related to several of the assumptions of the CO methods can be quantified.  

Of all the possible comparisons that can be made, a few are most instructive.  First, a 

comparison of the basic and revised CO methods (either using static R, or model-

predicted R ratios) can inform us of the uncertainty expected due to the combined effect 

of the net chemical component and the forest fire component.  Second, a comparison of 

the static methods (equations 4 and 5) versus the model methods (equations 6 and 7) 

quantifies the effect of assuming a spatially and temporally averaged R ratio versus one 

that reflects the spatial variation of the emission inventory.   

For the July 20th flight, the revised static results are on average 0.8 ppm less than 

the static method results (Figure 35a).  The difference between the revised static and 
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static methods is primarily due to forest fires and not the chemical component.  The 

average forest fire CO source is 24 ppbv on this flight while the net chemical component 

is relatively small at -6 ppbv.  However, near 19.5 hr the net chemical component is a 

strong sink (-28 ppbv) and the forest fire contribution is small, resulting in estimates of 
ffCO2 that are 1 ppm larger for the revised static method than the static method.  Inside 

the forest fire plumes (near 17.4 hr and 21.5 hr), the static method is on average 8.2 ppm 

greater than the revised static method.      

 

Figure 35.  Time series of ffCO2 from inventory method (thin black line), CO methods 
that do not account for non-fossil fuel CO (grey line), and revised CO 
methods accounting for forest fires and photochemistry (thick black line).  
The static CO methods (equations 4 and 5 with R = 20) are shown in A and 
the model CO methods (equations 6 and 7 with estimated by the transport 
model) are shown in B.   
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Estimates of ffCO2 based on the model CO approach and the revised model CO 

approach are shown in Figure 35b.  When the fossil fuel components are low, the 

modeled R ratio becomes very sensitive to errors in mod,ffCO.  To prevent unrealistic 

variability in R, the average model value of 23 was used when mod,ffCO is less than 4 

ppbv.  This accounts for 44% of values along the flight paths.  The average difference 

between the revised model and model approach results is 0.7 ppm due to the forest fire 

contributions.  Inside the forest fire plumes (near 17.4 hr and 21.5 hr), the static method is 

on average 7.2 ppm greater than the revised static method. 

For all flights, the revised methods tend to result in slightly lower values than the 

base case methods because the biomass burning CO is typically larger than the net 

chemical CO.  The average difference in ffCO2 between the model and revised model 

methods is 0.1 ppm.  This difference is plotted for all flight paths in Figure 36.  Over half 

of the observation points have absolute differences of less than 0.5 ppm.  The largest 

negative differences, ranging from -5 to -24 ppm, occur due to forest fire influences 

during the July 20th and July 31rst flights.  The most prominent positive differences, 1.4 to 

2.6 ppm, occur offshore of the northeast and southeast where the VOC oxidation makes a 

large contribution to the CO mixing ratio.   

A comparison of the static methods (equations 4 and 5) with the model methods 

(equations 6 and 7) can be used to provide a preliminary estimate of the CO method 

uncertainty due to the assumption of a spatially uniform ratio R.  For all ICARTT 

observations, the average difference between the revised model and the revised static 

approaches is 0.02 ppm due to the fact that the average model R value is similar to the 

static value.  However, the difference between the revised model and model method 

estimates can be as high as 9.8 ppm in plumes where the model predicts efficient 

combustion (R<20) and as small as -3.6 where the model predict inefficient combustion 

(R>20).  
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Figure 36.  Difference between ffCO2 estimates from the revised model CO approach and 
the model CO approach (ppm CO2) for all ICARTT DC8 flights. 

For CO2 inversion applications, the uncertainty in ffCO2 propagates to the 

uncertainty in the residual mixing ratios, rCO2, by equation 1.  For example, if 

unaccounted VOC sources resulted in an overestimate of ffCO2 by the static CO method, 

then rCO2 could be underestimated.  The inversion model would then retrieve a decreased 

surface flux value which could be mistakenly interpreted as an increase in 

photosynthesis.  To determine if the uncertainty in the CO method is significant relative 

to rCO2, the rCO2 was estimated along the ICARTT flight path.  The residual CO2 is 

obtained by driving the transport model with the fluxes described in section 2.1, 

including the inventory estimates of ffCO2.  The fraction of the CO uncertainty over the 

residual mixing ratio is calculated to determine the significance of uncertainty for 

inversion applications.  The average of the absolute value of this relative difference is 0.3 

indicating that the uncertainty is significant relative to the residual mixing ratio.  
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4.8 Comparison of CO Method Uncertainty with 14CO2 

Data 

 

The CO method uncertainty estimates are compared with absolute error estimates 

from a study of 14CO2 by the NOAA Global Monitoring Division (GMD) [Turnbull, et 

al., 2006].  Turnbull et al. (2006) measured boundary layer and background values for 

CO and 14CO2 on August 2nd during an aircraft flight over a sampling site in the northeast 

(42º 57’ N, 72º 37’ W).  Their results indicate that both the static CO method and the 
14CO2 method yielded an ffCO2 estimate of 4.2 ppm.  Our model results also indicate that 

the static CO method should be accurate at this place and time.  The model R value is 19 

which is very similar to the static R value of 20.  The modeled chemical sources and 

sinks are nearly balanced at the sampling time and location, with a chemCO value of -6 

ppbv.   

While the net chemical influence at this sampling site is small at the observation 

time, there are other times during August 2004 when the modeled net chemical sink is as 

extreme as -27 ppbv.  There are also times during August at the sampling site when the 

static R value may be incorrect as indicated by model R values that range from 16 to 36.  

Unfortunately, the additional observations from Turnbull et al. (2006) are outside of the 

model simulation period.  Future model runs that cover these other observations may be 

useful for interpreting the differences between CO and 14CO2 method results as well as 

validating the revised CO method.    

 

4.9 Summary 

Analysis of uncertainty in the revised CO method leads to several conclusions 

related to estimating the fossil fuel component in observed CO2:  
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1) If photochemical, biomass burning and LPS contributions are not considered, then 
these influences may cause uncertainty in the CO-based ffCO2 by as much as 4, 
12, and 24 ppm, respectively. 

2) Combining acetonitrile and SO2 observations with model results provides an 
alternative approach to estimating ffCO2 in concentrated biomass burning and LPS 
plumes. 

3) The CO method uncertainty due is on average 30% of the residual CO2 mixing 
ratio along the ICARTT flight paths.  

 

The analysis of model and observed tracers presented here, provided estimates of 

several aspects of uncertainty in the CO method due to non-anthropogenic components of 

the CO observation.  Future studies of the CO method uncertainty should provide a more 

comprehensive analysis of errors in R.  A complimentary approach to determining CO 

method uncertainty can be achieved with observations of CO and 14CO2 that provide 

estimates of the absolute error in the CO method.  For example, Turnbull et al. (2006) 

found underestimates of ffCO2 by the CO method of 1 to 5 ppm during winter and spring, 

with improved agreement during the summer.  Combining the approach in the present 

study with the approach in Turnbull et al. (2006) would allow for the identification of the 

components of the absolute error, which could lead to improvements in the design of the 

CO method.  Furthermore, the STEM-2K3 model could be used in forecast mode to 

identify observation times and locations in which uncertainty components such as the net 

chemical sinks would be most pronounced.   

The revised CO method presented here was designed to extract the quantity of 
ffCO2 from an observation of CO while drawing on model and observed tracers to resolve 

uncertainties.  The revised method could be further developed to incorporate SO2 

observations for reducing uncertainty due to LPS’s.  The usefulness of observed 

acetonitrile and SO2 indicates that long term measurements of these species at carbon 

observatories would be helpful for improving the CO method in future inversion studies. 
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CHAPTER 5 ANTHROPOGENIC TRACER RATIOS FROM INTEX-B 

OBSERVATIONS AND A CHEMICAL TRANSPORT MODEL 

 

5.1 Introduction 

 

In the previous chapter, assumed and modeled ratios of fossil fuel CO:CO2 were 

applied for estimating the fossil fuel component of CO2.  The average ratio for the U.S. 

was assumed to be 20 (ppb CO / ppm CO2) based on national emissions inventories while 

ratios as low as 5 were calculated for observations that were influenced by large point 

sources (LPS).  The range of ratios will depend on the efficiency of combustion.  For 

example, high efficiency and low ratios are associated with LPS while low efficiency and 

high ratios are typical of biofuels.   

The anthropogenic CO:CO2 ratio has been estimated for different source types 

and countries using economic and energy use data.  Gridded anthropogenic emissions 

inventories for Asia were created as a part of the Transport and Chemical Evolution over 

the Pacific (TRACE-P) experiment [Streets, et al., 2003].  These emissions were used to 

calculate the range of anthropogenic CO:CO2 ratios presented in Table 7 

[Suntharalingam, et al., 2004].  The ratios for fossil fuel emissions from China, India, 

and Southeast Asia are much higher than the ratios for Japan and Korea, reflecting the 

higher CO emissions from fossil fuel combustion.  The U.S. value of 20 falls in between 

these Asian source ratios.  The combustion ratios for biofuels and biomass burning are 

much higher than for fossil fuel. 

During the INTEX-NA experiment (Summer 2004, North America), the variation 

of the CO2 observations was dominated by the biosphere influence, masking the 

contributions of fossil fuel component and preventing a direct estimate of the combustion 

ratio of CO:CO2 from observations.   Had the experiment been conducted outside of the 
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growing season, the influence of the biosphere would have been much smaller, allowing 

for an analysis of the combustion ratios from the observations.   

Table 7.  Ratios of CO to CO2 observed during the TRACE-P experiment by sector and 
region.   

Sector China  Japan  Korea  India Southeast Asia   
FF 38 9 15 42 28  
Biofuel 83 110 152 67 143  
Biomass Burning 83 83 83 83 83  
Biosphere 1 1 1 10 94  
Regional average 18 8 19 42 77  

Source: Suntharalingam, P., et al. (2004), Improved quantification of  
Chinese carbon fluxes using CO2/CO correlations in Asian outflow, 
 J. Geophys. Res., 109. 

 

The NASA Intercontinental Transport Experiment B (INTEX-B) provides a data 

set outside of the growing season in which combustion emissions of CO and CO2 

dominate the variance of the observations.  This experiment includes similar 

measurements from the DC8 aircraft as during INTEX-NA, but covers a different domain 

and season.  The flights occurred during the daytime between March 4 and March 22, 

2006 with flight paths over Mexico, the Gulf of Mexico and the southern U.S. as shown 

in Figure 37.  The INTEX-B campaign was part of the MILAGRO field campaign 

(Megacity Initiative: Local and Global Research Observations) which included 

participants from many universities and research agencies. 

The objective of this chapter is to provide a top-down analysis of the 

anthropogenic CO:CO2 ratios using the INTEX-B observations and the STEM regional 

transport model.  The influence of the chemical sources and sinks of CO and biosphere 

fluxes on CO2 are accounted for with the model.  The STEM adjoint is applied to 

estimate influence regions for sources. 
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Figure 37.  Flight paths (thick black line) of the DC8 during INTEX-B with STEM model 
domains indicated by three shaded boxes for 60 km, 12 km, and 4 km model 
grid resolutions. 

 

5.2 INTEX-B Observations of CO2 and CO  

 

The INTEX-B flight paths sampled air masses with elevated fossil fuel sources 

over Mexico, the southern U.S., and the Gulf of Mexico.  The vertical profiles of CO2 

observations from INTEX-NA and INTEX-B are plotted in Figure 38.  The measurement 

methodology is the same as described in previous chapters.  During INTEX-B, the near-

surface mixing ratios increased by 1% (3 ppm) above the background mixing ratios while 

during INTEX-NA there is a 3% decrease (15 ppm).  The near-surface decrease observed 

during INTEX-NA was shown in Chapter 2 to be due to the dominating biosphere 
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influence.  The near-surface increase during the INTEX-B flights is associated with 

combustion sources as indicated by strong correlations with CO shown in Figure 40.   
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Figure 38.  Mean CO2 (ppm) vertical profiles from the INTEX-NA (blue) and INTEX-
NB (pink) observations with standard deviation as error bars. 

The upper-troposphere CO2 concentrations in Figure 38 are on average 375 ppm 

and 382 ppm for INTEX-NA and INTEX-B respectively.  This CO2 background 

difference is due to the interannual difference caused by the average annual increase of 

approximately 1.5 ppm from fossil fuel emissions, the seasonal difference due to high 

uptake in July and low uptake in March, and the latitudinal gradient due to the latitudinal 

gradients in biosphere and fossil fuel fluxes.  The larger standard deviations (error bars) 

for INTEX-NA than INTEX-B are due to the fact that the diurnal variation of the 

biosphere fluxes has an amplitude on the order of 100% while the fossil fuel emissions 

have an amplitude of 30%.    
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The CO vertical profiles for INTEX-B and INTEX-NA are shown in Figure 39.  

The near-surface CO mixing ratios are higher for INTEX-B than INTEX-NA which may 

be due to less efficient fuel combustion in Mexico sources than U.S. sources.  The high 

variability of the INTEX-B CO at 2.5 km is the Mexico City source which is located at 

2.2 km above sea level.  The upper-troposphere mixing ratios for INTEX-NA are higher 

than INTEX-B which was shown in Chapter 4 to be due to the INTEX-NA sampling of 

forest fire CO at high altitudes that had undergone long range transport from Alaska and 

Canada. 
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Figure 39.  Mean CO (ppb) vertical profiles (km above sea level) from the INTEX-NA 
(blue) and INTEX-NB (pink) observations with standard deviation as error 
bars. 

 The plot of INTEX-B observations of CO2 to CO in Figure 40 shows two distinct 

trends for enhanced levels of CO2 and CO.  The steeper trend should be associated with 

higher combustion efficiencies and the flatter trend should be associated with less 

efficient combustion sources.  The same plot is shown in Figure 41 with the observations 
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near the Mexico City region in red (within 200 km), the observations near the U.S in 

green (>26.5 degrees latitude).  The Mexico City observations account for all of the low 

efficiency observations.  The U.S. observations of CO and CO2 are on the low end of the 

high efficiency trend and are highly correlated (r2 = 0.7).  The rest of the elevated mixing 

ratios (black dots) are observed over Mexico and the Gulf of Mexico.  The U.S. 

observations are not the highest efficiency observed which may indicate low efficiency 

sources in the U.S and/or long range transport from Mexico. 
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Figure 40.  Observed mixing ratios of CO vs. CO2 along the INTEX-B DC8 flight paths. 
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Figure 41.  Observed mixing ratios of CO vs. CO2 along the INTEX-B DC8 flight paths 
with observations within 200 km of Mexico City in red, observations above 
26.5 degrees north in green (over U.S. and northern Gulf of Mexico), and all 
other observations in black. 

5.3 Ratios of Combustion CO:CO2  

 

The ratio of combustion CO to CO2 is approximated directly from the INTEX-B 

observations using fixed background values.  The mixing ratios observed at the NOAA 

GMD Mauna Loa observatory vary from 382 to 383.5 ppm for CO2 and 70 to 110 ppb for 

CO during March of 2006.  These mixing ratios are used to estimate fixed background 

values as 90 and 382.5 for CO and CO2 respectively.  The combustion ratio is calculated 

as, 

 α = ([CO] – 90) / ([CO2] – 382.5)        (1) 
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where α is the combustion ratio (ppb CO / ppm CO2), [CO] is the observed CO mixing 

ratio, and [CO2] is the observed CO2 mixing ratio.  The combustion ratio is calculated for 

sampling points where the CO2 mixing ratio is over 385 ppm to reduce sensitivity of the 

calculated ratio to errors in the approximated CO2 background.   

The combustion CO:CO2 ratio has a mean of 18±14 ppb CO/ppm CO2 (log-

normal distribution) with the spatial distribution mapped in Figure 42.  The ratios over 

Mexico City vary from 32 to 87.  These values are comparable with the combustion of 

fossil fuel in China and India, biomass burning, and biofuels as indicated by the Asian 

emissions summarized in Table 7.  The enhanced ratios over the rest of Mexico are 

primarily in the range of 20 to 31.  The ratios over the U.S. are lower than Mexico with a 

mean of 15.  The U.S. mean ratio is lower than the ratio of 20 that has been assumed in 

past studies.  The ratios over the region of the Gulf of Mexico just offshore of Mexico are 

consistently the lowest with typical values ranging from 4 to 12.   

    

 

Figure 42.  Observed ratios of enhanced CO:CO2 along the INTEX-B DC8 flight paths 
where observed CO2 is greater than 385 ppm. 
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It is surprising that the ratios offshore of Mexico are the lowest during INTEX-B 

because these are likely to be downwind of the high ratio region over Mexico.  The CO2 

mixing ratios over this region of the Gulf are the highest observed during INTEX-B 

besides over Mexico City as shown in Figure 43.  The closest source region is Mexico 

City.  It would be expected that if Mexico City were the source for theses high CO2 

observations, then these observations should also have a similar combustion ratio as over 

Mexico City.  Errors in the combustion ratio calculation due to the fixed background 

assumption will not increase the Gulf ratios to levels more typical of Mexico combustion 

sources. 

 

Figure 43.  Observed CO2 (left) and CO (right) mixing ratios along the INTEX-B DC8 
flight paths. 
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The explanations for these small ratios include the following.  First there could be 

non-combustion influences on the observations such as biosphere CO2 fluxes or chemical 

production and consumption of CO.  Transport from regions other than central Mexico 

would also explain this anomaly.  Finally, local sources over the Gulf such as offshore oil 

rigs may provide an explanation.  These alternatives are explored in the following 

sections. 

5.4 Biosphere Influence on INTEX-B CO2 Observations 

 

Unaccounted for biosphere respiration sources would results in overestimates of 

the elevated combustion CO2 source (denominator of equation 1) and underestimates of 

the combustion source CO:CO2 ratio.  The biosphere fluxes are not expected to be large 

during INTEX-B due to the fact that the flights are in early March before the growing 

season has begun.   

The SiB NEE biosphere fluxes for March 2003 are used to drive the STEM model 

on the 60 km by 60 km domain for approximating the biosphere contributions along the 

DC8 flight paths.  In Figure 44, the biogenic mixing ratios are mapped along the portions 

of the flight path were the elevated combustion mixing ratios are observed.  Net sink 

contributions are found over the U.S. and net source contributions are found over 

Mexico.  The biosphere contributions over the Gulf of Mexico are very small and 

unlikely to influence the calculations of the combustion ratio. 

There is some observational evidence that the variability of the biosphere 

component may be larger than indicated by model results.  At several segments of the 

INTEX-B flight paths there were reported CO2 measurements below the background 

levels.  The vertical profile in Figure 45, indicates the altitudes of these observations.  

The low CO2 mixing ratios observed at low altitude are very likely to be caused by the 
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biosphere sink.  These values are 3 ppm below background while the modeled biosphere 

predicts a depression of 0.06 ppm.   

 

 

Figure 44.  Model CO2 from SiB NEE fluxes along the INTEX-B DC8 flight paths. 
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Figure 45.  Vertical profile of observed CO2 mixing ratios with values below 380 ppm 
highlighted in pink. 

The lows observed at high altitude cannot be associated with the biosphere 

influence due to their distance from the surface.  These observations are likely due to 

stratospheric intrusion because this CO2 depression is strongly correlated with an ozone 

enhancement.   

5.5 Chemical CO Sources and Sinks 

 

Chemical sinks of CO from oxidation with OH could also be responsible for the 

surprisingly small values of combustion CO:CO2 calculated over the Gulf.  The net 

chemical contribution to CO was calculated as in Chapter 4, by taking the difference of 

the full chemistry STEM run and a STEM run with no chemical reactions.  A positive 

chemical contribution indicates a net source of CO from chemical reactions while a 

negative chemical contribution indicates a net sink of CO from chemical reactions.  The 

mean chemical contribution along the INTEX-B flight paths is 14 ± 43ppb, indicating an 
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overall stronger influence from VOC sources of CO than OH oxidation consumption of 

CO.   

There are three segments of the INTEX-B flights where the magnitude of the net 

chemical component of CO is over 300 ppb.  These three cases occurred during sampling 

directly over Mexico City on March 11th, 12th, and 19th.  The time series for the CO 

mixing ratios during these events is shown in Figure 46.  During the March 11th and 12th, 

the model results with no chemical reactions (blue) shows much greater similarity to the 

observations (green) indicating a possible overestimate by the model of chemical sinks.  

These two passes over Mexico City correspond to two of the four largest pollution events 

sampled by the DC8.  On the March 19th flight segment, the model with no chemical 

reactions greatly overestimates the observations while the full chemistry model shows 

better agreement.  In this case the chemical sinks of CO improved the modeling 

capability.   

The chemical contribution to modeled CO is plotted in Figure 47 along the flight paths 

that showed enhanced CO2.  The net chemical CO mixing ratios in the Gulf close to the 

shore of Mexico, are positive indicating a net chemical source of CO.  The ratios of 

combustion CO:CO2 calculated in this region by equation 1 were unexpectedly small.  If 

the net chemical component for CO is a net source as indicated by the model, then the 

chemical source of CO should also be subtracted from the numerator of equation 1, 

making the CO:CO2 ratio even smaller.  The chemical influence on CO cannot help 

explain the unexpectedly small combustion ratio. 

5.6 Influence Regions for Gulf of Mexico Observations 

 

The low ratios over the Gulf offshore of Mexico are surprising because there are 

considerable enhancements of CO2 in these observations and the closest CO2 source is 

Mexico where the combustion ratios are very high.  Another potential explanation of the 
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small ratios is transport from a different source region than Mexico City.  To analyze the 

source regions for these observations, the adjoint sensitivity approach presented in 

Chapter 4 is applied to the INTEX-B observations.  The 60km by 60km STEM domain is 

used to generate influence regions for two low ratio observation locations (L1 and L3) 

and one high ratio locations (Figure 48). 
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Figure 46.  The CO concentrations during the three large pollution events observed from 
the DC8 including observed CO (green), modeled CO (pink), and modeled 
CO with no chemical reactions (blue).  All three events were sampled over 
Mexico City. 
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Figure 47.  The net chemical contribution to the modeled CO component along the flight 
paths.  Flight paths are limited to those having observed CO2 mixing ratios 
above 385 ppm. 
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Figure 48.  Influence regions for measurement locations over the gulf where the 
combustion CO:CO2 ratio was low (L1 and L3) and where the combustion 
CO:CO2 ratio was high (H2).  The warm colors indicate regions of strong 
influence and the cool colors indicate regions of less influence. 

In Figure 49 the influence regions are shown with the low ratio influence regions 

in the top row and the high ratio influence region in the bottom row.  The influence 

region for the high combustion ratio observation (H2, bottom) passes directly over 

Mexico City. The Mexico City source region has the high emissions of CO which 

explains the high combustion CO:CO2 ratio.  The influence regions for the low 

combustion ratios (L1 and L3, top row), are concentrated over coastal and southern 

Mexico which have relatively small emissions of CO and CO2.  This explains why the 

low ratios observed offshore of Mexico are not similar to the typical high ratios for 

Mexico emissions sources.  However it is still unclear what source supplied the very high 

levels of CO2 and modest elevations of CO at the L1 and L3 observation locations. 
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Figure 49.  Influence regions (normalized) for measurement locations over the gulf where 
the combustion CO:CO2 ratio was low (L1 and L3) and where the combustion 
CO:CO2 ratio was high (H2).  The warm colors indicate regions of strong 
influence and the cool colors indicate regions of less influence. 

 

5.7 Offshore oil rig sources of CO and CO2 over the Gulf 

 

The influence regions shown above suggest that the observations offshore of 

Mexico are not connected by transport to the large Mexico combustion sources.  This 

explains why the combustion ratios offshore of Mexico are much smaller than over 

Mexico.  The very large CO2 enhancements and average CO enhancements observed 

offshore of Mexico must have a different source.   

L1 L3
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One possible source for the enhanced CO2 is offshore oil rigs which have large 

emissions of CO2 and CH4 from gas flaring [Christensen, 1994; Countess and Browne, 

1993].  The CH4 emissions from offshore oil rigs are very large due to gas flaring which 

makes CH4 a good tracer of this source type tracer.  A recent study analyzed the 

emissions of the Sonda de Campeche offshore oil rig in this region of the Gulf of Mexico 

in comparison with offshore oil rig emissions reported by BP and Shell [Schifter, et al., 

2005].  The CH4 and CO2 emissions and the calculated combustion ratio for CH4:CO2 are 

shown in Table 8.  The combustion ratios for CH4:CO2 range from 6 to 12 ppb CH4 / ppm 

CO2.  Typical emission ratios are also calculated from emissions reported for United 

Kingdom offshore oil rigs [UKOOA, 1998], resulting in a CH4:CO2 ratio of 3 ppb/ppm 

and a CO:CO2 ratio of 9 ppb/ppm.  Alternatively, the ratio for continental Asia emissions 

calculated from the Streets et al. [2003] inventory is 33 ± 21 ppb CH4 / ppm CO2.   

Table 8. Offshore oil rig emissions of CO2 and CH4 for BP, Shell, and Pemex platforms. 

Source 
CO2 
(tons/yr) 

CH4 
(tons/yr) 

CH4/CO2 
(molar) 

CH4/CO2 
(ppb/ppm) 

  

BP 76.6 0.33 0.0118 11.8   
Shell 92 0.398 0.0119 11.9   
Pemex Sonda 
Campeche 19.08 0.0397 0.0057 5.7 

  

Source: Schifter, I., et al. (2005), Air emissions assessment from  
offshore oil activities in Sonda de Campeche, Mexico,  
Environmental Monitoring and Assessment, 109, 135-145. 

 

The vertical profile of the mean CH4 observations from INTEX-B DC8 flights is 

shown in Figure 50.  The observations are enhanced near the surface sources above the 

background concentrations.  The elevated values around 2 km are due to the altitude of 

Mexico City at approximately 2 km.  The CH4 vertical profile is similar to the patterns in 

the CO and CO2 vertical profiles. 
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Figure 50.  Vertical profile (km above sea level) of mean methane (ppb) observations 
along INTEX-B DC8 flights with standard deviations as error bars. 

The ratio for CH4:CO2 is calculated for the INTEX-B flights as follows, 

 β = ([CH4] – 1775ppb) / ([CO2] – 382.5ppm)      (2) 

where β is the CH4:CO2 ratio (ppb CH4 / ppm CO2), [CH4] is the observed CH4 mixing 

ratio, and 1775 ppb is the fixed background value estimated as the average INTEX-B 

CH4 observation above 6 km altitude.  The ratio is calculated for sampling points where 

the CO2 mixing ratio is over 385 ppm to reduce sensitivity of the calculated ratio to errors 

in the approximated CO2 background.   

The mapped CH4 observations and CH4:CO2 are shown in Figure 51.  Large CH4 

mixing ratios are measured directly over Mexico City and the Gulf locations in question.  

The three large episodes of CH4 offshore of Mexico (CH4 > 1900 ppb) have a mean 

CH4:CO2 ratio of 13 ± 2 ppb/ppm which is similar to the offshore oil rig emissions ratios 

in Table 8.  The low CO:CO2 ratios with a mean of 6 ± 1 ppb/ppm at this same location is 

also similar in magnitude to the offshore oil rig emission factor of 5 ppb/ppm.  The large 
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CH4 observations over Mexico City (CH4 > 1900 ppb) have CH4:CO2 ratios of 30 ± 17 

ppb/ppm.  

 

Figure 51.  Observed concentrations of methane (top left), CO2 (top middle), and CO (top 
right), combustion ratio of CH4:CO2 (bottom left), and CO:CO2 (bottom right) 
along the INTEX-B DC8 flight segments with CO2 observations above 385 
ppm. 

A summary of the CO:CO2 and CH4:CO2 ratios from the INTEX-B observations 

and emissions inventories is provided in Table 9.  The means and standard deviations for 

the INTEX-B Mexico City values are similar to the land emissions values while the 

INEX-B nearshore gulf values are similar to the oil rig emissions values. 
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Table 9. Summary of mean and standar deviations for CO:CO2 and CH4:CO2 ratios from 
INTEX-B observations and emissions inventories. 

  CH4:CO2 CO:CO2     

INTEX-B Mexico City 30(17) 57(20)     

INTEX-B Nearshore Gulf 13(2) 6(1)     

Land emissions 33(21) 52(28)     

Oil Rig Emissions 10(3) 9(NA)     

 

5.8 Conclusions  

 

 The atmospheric observations of CO and CO2 during INTEX-B were used to 

estimate the combustion ratio of CO:CO2 for Mexico and U.S. sources.  Calculated 

combustion ratios over the U.S. had a mean of 15 which is lower than the approximated 

ratio of 20 used in past studies.  Combustion ratios observed over Mexico were 

comparable to combustion ratios calculated for emissions in China and India.   

Very low CO:CO2 combustion ratios were observed offshore of Mexico with 

modest elevations of CO and very high levels of CO2 and CH4.  A detailed analysis of 

these flight segments indicates that the source of the offshore pollution may be from 

offshore oil rigs and not from sources over Mexico City.  Given that the INTEX-B 

campaign is to quantify the Mexico City outflow, future studies should be careful in 

attributing the offshore pollution events to long range transport from Mexico City without 

further investigation of the offshore oil rig emissions. 
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CHAPTER 6 SUMMARY AND RECOMMENDATIONS 

6.1 Summary 

 

Atmospheric measurements of process specific tracers can be used to infer 

information about processes that influence the surface flux of CO2.  In this dissertation, a 

novel tracer approach has been developed to quantify the biosphere fluxes of respiration 

and photosynthesis.  The dominant flux of COS by plant uptake was quantified by a 

linear relation to CO2 photosynthesis fluxes using atmospheric measurements and a 

transport model (Chapter 2).  The STEM 4D-Var data assimilation model was modified 

for the optimization of CO2 surface fluxes using only CO2 measurements and using both 

CO2 and COS measurements (Chapter 3).  The CO2-only inversion was only able to 

improve the net flux and not able to partition the flux improvements to respiration and 

photosynthesis components.  The CO2/COS inversion could separate the net flux into 

photosynthesis and respiration.  This is the first time, to our knowledge, that observations 

of COS have been used to infer information about CO2 surface fluxes.   

The CO tracer method for estimating the fossil fuel component of CO2 was 

revised to account for photochemistry, forest fires, and different combustion source types 

(Chapter 4).  Tracers of acetonitrile, SO2, and CH4 were also used to further partition the 

source types.  The revised CO method was compared with past CO method formulations 

to show a large uncertainty range that is significant to CO2 inversion studies.  The revised 

approach was applied to identify combustion sources over the U.S. (Chapter 4) and 

Mexico (Chapter 5).    
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6.2 Recommendations 

 

Given the improved results with the use of the COS, CO, acetonitrile, SO2, and 

CH4 tracers it is clear that top-down analysis of CO2 fluxes will benefit from the 

inclusion of tracer techniques.  The simultaneous measurements of CO2 with these tracers 

should be pursued in future carbon cycle studies.  The implementation of these methods 

is straight forward with existing measurement and modeling techniques. 

The COS technique for partitioning photosynthesis and respiration fluxes is based 

on a linear relation between COS plant uptake and CO2 photosynthesis uptake.  This 

assumption is supported by very strong linear correlations between COS and CO2 

observations over diverse landcover types and sampling times.  However, the variability 

that is not explained by the linear relationship should be pursued and incorporated into 

the COS/CO2 inversion approach.  Eddy flux observations of COS are under 

development and should provide many clues about the details of the COS plant uptake 

mechanism. 

Validation of the revised CO method with radiocarbon observations would be 

highly desirable for determining the accuracy of this method.  Although radiocarbon 

observations are sparse, data could be utilized from several regional field campaigns for 

this purpose.  This validation could also provide the complementary validation of the 

STEM representation of atmospheric chemical reactions.   
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Abstract 

  

Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil 

quality studies, carbon sequestration technologies, and carbon trading.  Forest SOC has 

been modeled using a regression coefficient methodology that applies mean SOC 

densities (mass/area) to broad forest regions.  A higher resolution model is based on an 

approach that employs a geographic information system (GIS) with soil databases and 

satellite-derived landcover images.  Despite this advancement, the regression approach 

remains the basis of current state and federal level greenhouse gas inventories.  Both 

approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying 

rigorous error-fixing algorithms to soil databases.  Resulting SOC stock estimates are 20 

percent larger when determined using the GIS method rather than the regression 

approach.  Average annual rates of increase in SOC stocks are 3.6 and 0.9 million metric 

tons of carbon per year for the GIS and regression approaches respectively.   
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1. Introduction 

 

Estimates of the mass of forest soil organic carbon (SOC) are applied to 

determine long-term carbon fluxes, to manage natural resources and to design carbon 

sequestration strategies.  Several approaches to estimating these forest SOC stocks are 

currently in use and may provide conflicting results.   

One method for estimating forest SOC stocks is a regression approach in which 

regional SOC densities (mass SOC/area) are a function of temperature, precipitation, age 

class, and land-use history for different ecosystems (Post et al., 1982; Birdsey, 1992).  

These densities are estimated for broad regions as shown in Table A1.  SOC stocks are 

then calculated by multiplying the SOC densities by annual forest areas.  Annual forest 

area data is available from field inventory surveys by the U.S. Department of Agriculture 

(USDA) Forest Service and recorded in the Forest Inventory and Analysis (FIA) 

database.  Further adjustments to the stock estimates can also be made based on 

assumptions of changes in land cover over time. 

 
Table A1.  Estimated soil organic carbon density for regional forests in the U.S. (Post et  

al., 1982). 

Region 
Soil organic 
carbon (kg/m2) 

   

Southeast 7.74  
South Central 7.58  
Northeast 16.21  
Mid-Atlantic 11.56  
North Central 13.09  
Central 8.33  
Rocky 
Mountain 8.02

 

Pacific Coast  9.77  
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This regression methodology has been used to create regional and national forest 

carbon estimates for the United States (Birdsey and Lewis, 2000, Heath and Birdsey, 

1993, Plantinga and Birdsey, 1993, Turner et al., 1995).  This method is also currently 

applied in state (Franco, 2002, Kerr, 2004) and federal (EPA, 2004) greenhouse gas 

inventories.  The regression method is prescribed in the U.S. EPA’s Emission Inventory 

Improvement Program (EIIP) which develops preferred methods for state and territory 

level emission inventories (EIIP, 2005).  This is also the case for U.S. federal emissions 

inventories which were instructional to the EIIP (EPA, 2004).   

An updated methodology for estimating SOC stocks applies a geographic 

information system (GIS) to calculate SOC densities for each forest type within a region 

using the USDA soil databases and satellite-derived land cover images (Heath et al., 

2002).  Regional SOC stocks are estimated by multiplying these densities by forest type 

areas from the FIA database.  The use of soils databases makes the GIS method more 

data intensive than the regression approach.  The stock estimates are then adjusted based 

on assumptions of rates of change in stocks due to changes in land cover.  The GIS-based 

SOC estimates have been the preferred methodology for recent studies (Amichev B. Y. 

and Galbraith, 2003, Heath et al., 2003b, Johnson and Kern, 2003, Ney et al., 2002).   

A quantitative study of the errors of these two methods has not been performed 

due to a lack of sufficient validation data at regional scales.  In the future, regional 

measurements of SOC may be available from the USDA Forest Service and could be 

used to determine the accuracy of the two approaches.   Although it is not yet possible to 

determine which approach is more accurate, there is much to be learned by comparing the 

results of the two approaches.  The disparity between methods provides information 

about the uncertainty of our understanding of SOC stocks and a caveat to using these 

methods interchangeably.  Furthermore a large difference between these methods would 

provide a strong motivation for examining the accuracy of these methods with 

forthcoming regional SOC measurements. 
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While a comparison of the regression- and GIS-based methods for estimating 

forest SOC has not previously been completed, related studies indicate the potential for 

large differences.  The results of a study of the northeastern U.S. indicates that the GIS 

method produced between 8 and 30 percent higher SOC densities than a coarse scale 

method based on the FAO/UNESCO Soil Map of the World (Davidson and Lefebvre, 

1993).  A study of soils in the western U.S. found area-weighted average SOC densities 

of 13.8 kg/m2 (depth of 1 meter) for a related GIS-based method and 12.1 kg/m2 for a 

Soil Map of the World-based approach (Homann et al., 1998).  These differences in 

densities are important because a small percent error in the densities used to calculate 

stocks may result in a much larger percent error in the annual change in stocks. 

The objective of our study is to compare the GIS and regression methods for 

estimating forest SOC stocks and annual rates of change in stocks.  These results are 

highly relevant for ongoing application of both approaches and for future regional SOC 

measurements that can be used to estimate the absolute error of each method.  The GIS-

based methods are applied for the state of Wisconsin and compared with previously 

published regression-based SOC estimates.  Wisconsin provides an ideal study domain 

because the Wisconsin forestlands are a major focus of forest carbon cycle studies (e.g. 

Burrows et al., 2002; Davis et al. 2003).  In addition, this paper provides a thorough 

analysis of recent developments in the GIS approach and detailed SOC results for 

Wisconsin forestlands.   

 

2. Methods 

 

2.1 Study area 

 

Our study region comprises forestlands in the state of Wisconsin, which account 

for over 40 percent of the total state area.  Forest types of maple-beech-birch, aspen-
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birch, and oak-hickory comprise the majority of the forest area.  Forest data is available 

from the USDA Forest Service and Wisconsin Department of Natural Resources for 

1983, 1996, and 2001.  Wisconsin forest areas have been increasing since the 1970’s 

(Schmidt, 1997), primarily due to a transition from marginal agricultural land use to 

forestland.  Some areas of decreasing forestland were found in the southeast due to urban 

and suburban development.  Field methods for survey data applied in this paper were 

similar between survey years, making inter-annual comparisons appropriate.   

 

2.2 GIS Method 

 

We developed a model with GIS and Visual Basic scripts to apply the most 

updated methods for estimating forest SOC stocks within our study domain.  The model 

automates SOC calculations which are based on geospatial data including USDA soil 

databases, USDA Forest Service data from inventory field measurements, and a land 

cover map of North American forest types.  The model process follows the sequential 

steps of (i) soil data error fixing; (ii) calculation of statewide baseline SOC density; (iii) 

calculation of SOC  densities by forest type; (iv) calculation of annual carbon stocks 

based on forest type SOC densities and forest type areas; and (v) area weighted statistical 

analysis of results (Figure A1).  
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Figure A1.  Process diagram for forest SOC estimation with GIS and Visual Basic  

scripts. 

 

The error fixing and statewide SOC calculations were implemented using the  

STATSGO (State Soil Geographic) database of geospatial soils data from the USDA 

Natural Resources Conservation Service (NSSC, 1994).  The soil attributes used in 

calculations of SOC were bulk density, percent organic matter, and percent of rock 

fragments of different sizes.  This data was derived from field surveys completed over the 

last 50 years and is composed of mapunits with a minimum area of 625 hectares.   

The first step in the GIS method is updating invalid STATSGO data.  A variety of 

methods have been demonstrated for error fixing.  Minimum values have been required 

for bulk density and organic matter (Bliss et al., 1995, Davidson and Lefebvre, 1993).  

Null values have been replaced with estimates that are a function of data in the soil layers 

above the layers with missing data (Homann et al., 1998).  Null values have also been 

replaced with data from adjacent layers with related soil types (Lacelle et al., 2001).  Null 

and zero values have been updated based on groupings of soil order, Major Land 
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Resource Area (MLRA), layer number, and texture (Amichev B. Y.  and Galbraith, 

2003).  Our error fixing approach was based on the latter algorithm with the following 

notable exception.   

After the data errors are corrected, the statewide SOC densities were calculated 

with nested queries at the soil mapunit, component, and layer levels.  Our calculations 

incorporated layer data to 1 meter depth.  The 0- to 1-meter layer is thought to include 

most of the SOC mass in a soil column.  The SOC density for each mapunit was 

calculated as follows (Bliss et al., 1995, Davidson and Lefebvre, 1993) 

[ ]∑ ∑
⎭
⎬
⎫

⎩
⎨
⎧

⋅⋅⋅⋅⋅=
j i

jijijijijS UFEOMBDHCOMPPCTC 724.1/,,,,

 (1) 

where Cs is the SOC density for mapunit S (metric tons/ha), H is the soil layer thickness 

(cm), BD is the average bulk density (g/cm3), OM is the average organic matter content ( 

percent by weight), FE is the fraction of fine earth material (<2 mm), COMPPCT is the 

percentage (by area) of a component within a map unit (percent), 1.724 is the fraction of 

carbon content to organic matter by weight (Nelson and Sommers, 1982), i is the soil 

layer index, j is the component index, and S is the mapunit index. 

We included mineral soils and organic soils (Histosols) in our STATSGO 

baseline calculations because land that is classified as forestland can contain small areas 

of wetlands.   Some Histosols will be outside of forestland, which can cause results to be 

larger than the true value.   

The statewide SOC densities, described above, were converted into forest type 

SOC densities by overlaying satellite land use imagery over the map of STATSGO 

mapunit SOC densities.  We used a forest-type map derived from Advanced Very High 

Resolution Radiometer (AVHRR) composite images at 1 km resolution that portrays 25 

classes of forest types, recorded during the 1991 growing season (Zhu and Evans, 1994).  

While a Landsat land cover data set is also available for Wisconsin (WDNR, 1998), we 
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use the AVHRR data because the forest type classification in the AVHRR data 

corresponds with the forest types in the FIA data set.  The statewide SOC density map 

was converted to a gridded map and overlayed on the AVHRR gridded map in order to 

calculate the area weighted mean SOC density for each forest type.   

The forest type SOC densities were then used to calculate annual SOC stocks by 

multiplying the densities by forest area data at the county level from the FIA database for 

1983, 1996, and 2001.  Further modification of the SOC stocks can be made using the 

land cover transition and land management assumptions synthesized in the national level 

FORCARB model (Heath et al., 2002).  This requires additional input on changes in land 

use and management that can be obtained from the USDA Natural Resources 

Conservation Service’s (NRCS) National Resources Inventory.  However, the NRI data 

for Wisconsin are not statistically reliable at the county scale (Goerg, Personal 

communication).  In addition, a meta-analysis of the assumptions on SOC dynamics from 

land use and management transitions indicates mixed empirical results (Johnson and 

Curtis, 2001).  The analysis in this Wisconsin forest study reflects changes in areas of 

forest types, but not assumptions of SOC dynamics from land use and management 

transitions. 

 

2.3 Regression Method 

 

Regression estimates of SOC stocks for 1987, 1992, and 1997 for Wisconsin were 

obtained from a national inventory of state forest carbon (Birdsey and Lewis, 2000).  A 

single SOC density is estimated for the entire North Central region as a function of 

regional temperature, precipitation, age class, and land-use history (Birdsey, 1992).  SOC 

stocks are determined by multiplying the SOC densities by annual forest areas from the 

FIA.  The published stocks were interpolated by Birdsey and Lewis (2000) from FIA 
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inventory years to the years 1987, 1992, and 1997 in order to compare SOC stocks 

between states with different inventory years.       

These regression based stocks for Wisconsin are the same results presented in the 

most recent Wisconsin greenhouse gas inventory (Kerr, 2004).  The regression method is 

closely related to the method in the EIIP.  The notable exception is that the EIIP 

guidelines indicate that the annual rates of change in SOC stocks should be estimated by 

multiplying regression-based SOC densities by FIA forest area data for different years 

and fitting a line to the data.  The results from Birdsey and Lewis (2000) go a step further 

to estimate changes in SOC between inventory years based on assumptions of SOC 

changes due to different land use transitions and land management.   

 

3. Results and discussion 

 

3.1 GIS-based results  

 

3.1.1 Data update 

 

Missing and invalid data were found and updated in 32 percent of all mapunits.  

The missing and invalid data were primarily in attribute variables associated with fraction 

of fine earth materials including weight percent of rock fragment 3 to 10 inches in size 

(INCH3), weight percent greater than 10 inches in size (INCH10), and percent of 

fragments passing a number-10 sieve (NO10) as shown in Table A2.  Map units with 

invalid data were relatively evenly distributed in space across the study domain as shown 

for the INCH10 data in Figure A2.   
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Figure A2.  Percent of valid data for each STATSGO map unit for the soil attribute for  

weight percent of rock fragments greater than 10 inches in size (INCH10). 

 
Table A2.  Percent of Wisconsin layer records found to be valid, invalid, and null for  

STATSGO attributes used in the SOC calculations including weight percent 3 to  
10 inches (INCH3), weight percent greater than 10 inches (INCH10), percent  
passing a number 10 sieve (NO10), organic matter (OM), and bulk density (BD). 

  INCH3 INCH10 NO10 OM  BD    
Valid 91.00% 73.70% 89.40% 99.90% 99.90%  
Invalid 3.60% 9.00% 0.00% 0.10% 0.10%  
Null 5.30% 17.30% 10.60% 0.00% 0.00%  

 

3.1.2 Statewide SOC estimates 

 

Statewide SOC density results are shown in Figure A3 by mapunit (Figure A3a) 

and county (Figure A4b).  Densities for depths up to 1 m range from 0.5 kg/m2 in soil 

components with unweathered bedrock and stony texture to 92.1 kg/m2 in muck and peat 

soils.  The area weighted mean density for all of Wisconsin soils is calculated as 14.2 

kg/m2.  Using the same GIS methodology for all depths resulted in an area weighted 
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mean of 17.6 kg/m2.  This larger result is comparable to an average Wisconsin SOC 

value of 17.2 kg/m2 from a previous study in which data was neglected for all layers 

below layers with missing or null values (Bliss et al., 1995).   

 

 
Figure A3.  Soil Organic Carbon densities (kg/m2) for depth to 1 meter by map unit (a)  

and area weighted average densities for counties (b). 

 

3.1.3 Baseline forest type SOC estimates 

 

Baseline forest type SOC densities, obtained from the overlay of forest type and 

statewide SOC maps, are summarized in Table A3.  The ratio of the area weighted mean 

to the area weighted standard deviations are similar in magnitude to related results for the 

southeastern U.S. (Heath et al., 2002).  A comparison of the Wisconsin mean SOC 

densities by forest type with the SOC densities from the southeastern U.S. study is also 
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provided in Table A3.  Densities from the Wisconsin and the southeastern U.S. are of the 

same order of magnitude; however, oak-hickory and maple-beech-birch forests appear to 

be associated with higher SOC soils in Wisconsin while spruce-fir and aspen-birch are 

associated with higher SOC soils in the more general region.  Overall the forest SOC 

densities are higher in Wisconsin, with area weighted means of 16.4 kg/m2 and 11.7 

kg/m2 for forests in Wisconsin and the southeastern U.S., respectively.   

 
Table A3.  Wisconsin forest type SOC density means and standard deviations in  

comparison with mean SOC densities for the southeastern U.S. region. 
Forest 
Type 

Wisconsin 
SOC 
(kg/m2) 

Wisconsin 
Standard 
Deviation 

Southeastern 
U.S. SOC 
(kg/m2)1 

  

White-red-
jack pine 20.3 14.1 19.6
Spruce-fir 15.6 12.7 19.3
Oak-
hickory 14.4 14.7 8.5
Elm-ash-
cottonwood 10.2 7.4 11.8
Maple-
beech-birch 18.6 13.4 13.9
Aspen-
birch 15.7 13.1

23.7

1Southeastern U.S. results are from a previous study of SOC using STATSGO and 
AVHRR satellite imagery (Heath et al., 2002). 

 

The accuracy of the forest type SOC densities depends in part on the classification 

error in the AVHRR land cover map.   Zhu and Evans (1994) reported errors by 

comparing the AVHRR and FIA based estimates of forest areas for each state.  For 

Wisconsin, the reported difference between the AVHRR and FIA areas was greater than 

3%. 

 

3.1.4 Annual forest SOC stocks 
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Annual forest SOC stocks are calculated for 1983, 1996, and 2001 from baseline 

forest SOC densities and annual forest type areas.  Statewide forest areas and SOC stocks 

are summarized in Table A4.  Total forest area increases by almost 4 percent from 1983 

to 2001 while forest SOC stocks increase by over 5 percent.  This is due to the large 

growth of maple-beech-birch forests which have a relatively high SOC density compared 

to the other forest types.  The overall increase in forest soil carbon is consistent with the 

continental increase in terrestrial carbon stocks inferred from atmospheric inversion and 

inventory studies (Pacala et al., 2001).  It is important to note that a fraction of the 

increase in forest SOC stocks is due to sequestration of atmospheric carbon dioxide while 

another fraction is due to the conversion of non-forestlands into forestlands.   

 
Table A4.  Statewide areas (1000 hectares) by forest type from FIA database, and  

calculated soil organic carbon (MMTC). 

  Area (1000 ha)  
Soil Organic Carbon 
(MMTC) 

Forest type 1983 1996 2001 1983 1996 2001
White-red-jack pine 519 492 540  106 100 110
Spruce-fir 659 550 522 103 86 82
Oak-hickory 1,175 1,177 1,136 169 170 164
Elm-ash-
cottonwood 534 623 548 54 63 56
Maple-beech-birch 1,640 2,167 2,189 304 402 406
Aspen-birch 1,614 1,404 1,437 253 220 225
Total: 6,142 6,412 6,373  989 1,040 1,042

 

Consideration of the GIS results at the county level demonstrates the spatial 

heterogeneity in forest SOC stock trends.  The changes in stocks (normalized by area), 

from 1983 to 2001, are shown in Figure A4 by county.  Regions of both increasing and 

decreasing forest SOC stocks exist.  The largest decrease in SOC stocks of -29 ton/ha, is 

in Sheboygan county, where forestland area decreased and developed area increased 
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during this period.  Increases in SOC stocks of over 20 ton/ha are found in the northern 

counties of Langlade, Manitowoc, Marinette, Vilas, and Iron.  These increasing stock 

trends are consistent with land cover studies showing conversion of marginal agriculture 

back to forests in northern Wisconsin (e.g. Schmidt, 1997).  The reported sampling error 

for the FIA areas indicates that most counties have less than 25% error, including the 

counties discussed above.   

 

 
Figure A4.  Change in county SOC stocks (metric tons/hectare) over the period 1983 –  

2001, normalized by county area. 

 

3.2 Comparison of GIS and Regression Results 

 

Previously published regression-based forest SOC results are compared with the 

GIS estimates described above.  The regression results are based on a single regional 

SOC density for the North Central region of the U.S. with a value of 13.09 kg/m2 (Table 
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A1).  The GIS method densities range from 10.2 kg/m2 to 20.3 kg/m2 for different forest 

types (Table A3).  The area weighted average density for the GIS method of 16.4 kg/m2 

is considerably larger than the regression SOC density. 

In Figure A5, the trends for SOC stocks from both methods show increasing 

forest stocks and relatively small variations in the annual rates of change.  The forest 

SOC stocks are much larger when calculated from the GIS method than the regression 

approach as expected by the difference in SOC density estimates from both methods.  

Stocks for the GIS approach are approximately 20 percent larger than stocks derived 

from the regression approach.  The regression approach may underestimate the SOC 

density and stocks relative to the GIS method due to the fact that the regression-derived 

SOC density is applied to a multi-state region in which Wisconsin has some of the largest 

SOC concentrations (Johnson and Kern, 2003). 

500

600

700

800

900

1000

1100

1980 1985 1990 1995 2000 2005
Year

SO
C

 S
to

ck
 (M

M
T

C
)

GIS
Regression

 
Figure A5.  Annual SOC stocks for Wisconsin forestlands based on the GIS method  

(squares) and the regression method (triangles). 

 

Average annual rates of stock growth are compared by linearly interpolating in 

time the GIS results to the same years as the published regression stocks.  The average 



www.manaraa.com

  147   

   

annual growth rates are 3.6 and 0.9 million metric tons of carbon per year for the GIS and 

regression approaches respectively (Table A5).  The large disparity between methods in 

the calculated annual rates of change is due to the fact that changes in SOC stocks from 

year to year are small relative to the change in stock.  A small error in SOC stocks 

translates to a very large difference in the annual rates of change.  The difference between 

the methods is much more significant for applications of rates of changes in stocks than 

applications of the magnitude of the stocks.     

 

 
Table A5. Forest SOC stocks (million metric tons of carbon) and average annual change  

by GIS- and regression-based methods1. 

  
SOC Stocks 
(MMTC) Average annual change (MMTC/yr) 

Year 1987 1992 1997 1987-1992 1992-1997 1987-1997
GIS results 1,005 1,025 1,041 4 3.2 3.6
Regression 
results 794 799 804 0.9 0.9 0.9

1Regression-based results for Wisconsin are from a national study of U.S. forests 
(Birdsey and Lewis, 2000). 

 

4. Conclusions 

 

The analysis of two SOC models shows large differences in results for stocks and 

annual rates of change in stocks when applied to recent forestland data for Wisconsin.  It 

is not yet possible to test which approach is more accurate because SOC measurements at 

the appropriate regional scales are not yet available.  However, the results do show large 

differences in the methods and the important conclusions that follow are: (1) the 

methodologies should not be used interchangeably; (2) the differences in methodologies 

provide information about the uncertainty of our current understanding of SOC stocks 

and annual changes in stocks; and (3) the direct measurements of SOC in future USDA 
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Forest Service inventories should be used to examine the absolute errors of both 

approaches.   

If the regression approach were found to be more accurate, then the GIS approach 

could be improved by incorporating more of the independent variables that the regression 

approach is based on such as precipitation and temperature.  On the other hand, if the 

more current data and finer resolution of the GIS approach provides greater accuracies, 

then the regression based results that are used in greenhouse gas inventories could be 

incorporating large errors into greenhouse gas policy.  In the most recent Wisconsin 

greenhouse gas inventory, the reported net anthropogenic greenhouse gas emissions were 

decreased by 17% when forest soil and biomass sequestration was added to the analysis 

(Kerr, 2004).  Had the larger GIS-based estimates of annual stock growth been applied, 

then the Wisconsin report would have found a larger decrease in net emissions when 

forest sequestration was considered.   
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